Skip to main content

Physical Exercise Is a Potential “Medicine” for Atherosclerosis

  • Chapter
  • First Online:
Exercise for Cardiovascular Disease Prevention and Treatment

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

Cardiovascular disease (CVD) has been recognized as the number one killer for decades. The most well-known risk factor is atherosclerosis. Unlike the acuity of CVD, atherosclerosis is a chronic, progressive pathological change. This process involves inflammatory response, oxidative reaction, macrophage activity, and different interaction of inflammatory factors. Physical exercise has long been known as good for health in general. In recent studies, physical exercise has been demonstrated to be a therapeutic tool for atherosclerosis. However, its therapeutic effect has dosage-dependent effect. Un-proper over exercise might also cause damage to the heart. Here we summarize the mechanism of Physical exercise’s beneficial effects and its potential clinical use.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Nakashima Y, Fujii H, Sumiyoshi S et al (2007) Early human atherosclerosis: accumulation of lipid and proteoglycans in intimal thickenings followed by macrophage infiltration. Arterioscler Thromb Vasc Biol 27(5):1159–1165

    Article  CAS  PubMed  Google Scholar 

  2. Bruning RS, Sturek M (2015) Benefits of exercise training on coronary blood flow in coronary artery disease patients. Prog Cardiovasc Dis 57(5):443–453

    Article  PubMed  Google Scholar 

  3. Fletcher GF, Balady G, Blair SN et al (1996) Statement on exercise: benefits and recommendations for physical activity programs for all Americans. A statement for health professionals by the Committee on Exercise and Cardiac Rehabilitation of the Council on Clinical Cardiology, American Heart Association. Circulation 94(4):857–862

    Article  CAS  PubMed  Google Scholar 

  4. Lavie CJ, Thomas RJ, Squires RW et al (2009) Exercise training and cardiac rehabilitation in primary and secondary prevention of coronary heart disease. Mayo Clin Proc 84(4):373–383

    Article  PubMed  PubMed Central  Google Scholar 

  5. Coyan GN, Reeder KM, Vacek JL et al (2014) Diet and exercise interventions following coronary artery bypass graft surgery: a review and call to action. Phys Sportsmed 42(2):119–129

    Article  PubMed  PubMed Central  Google Scholar 

  6. La Favor JD, Anderson EJ, Dawkins JT et al (2013) Exercise prevents western diet-associated erectile dysfunction and coronary artery endothelial dysfunction: response to acute apocynin and sepiapterin treatment. Am J Physiol Regul Integr Comp Physiol 305(4):R423–R434

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  7. Anand SS, Islam S, Rosengren A et al (2008) Risk factors for myocardial infarction in women and men: insights from the INTERHEART study. Eur Heart J 29(7):932–940

    Article  PubMed  Google Scholar 

  8. Lusis AJ (2012) Genetics of atherosclerosis. Trends Genet 28(6):267–275

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Herzberg GR (2004) Aerobic exercise, lipoproteins, and cardiovascular disease: benefits and possible risks. Can J Appl Physiol 29(6):800–807

    Article  CAS  PubMed  Google Scholar 

  10. Booth FW, Laye MJ, Lees SJ et al (2008) Reduced physical activity and risk of chronic disease: the biology behind the consequences. Eur J Appl Physiol 102(4):381–390

    Article  PubMed  Google Scholar 

  11. Safdar A, Hamadeh MJ, Kaczor JJ et al (2010) Aberrant mitochondrial homeostasis in the skeletal muscle of sedentary older adults. PLoS One 5(5):e10778

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  12. Froelicher VF, Oberman A (1972) Analysis of epidemiologic studies of physical inactivity as risk factor for coronary artery disease. Prog Cardiovasc Dis 15(1):41–65

    Article  CAS  PubMed  Google Scholar 

  13. Gromnatskii NI, Siniichuk KV (1967) Immunogenesis in Fisgher-Evans syndrome. Probl Gematol Pereliv Krovi 12(9):56–57

    CAS  PubMed  Google Scholar 

  14. Joyner MJ, Green DJ (2009) Exercise protects the cardiovascular system: effects beyond traditional risk factors. J Physiol 587(Pt 23):5551–5558

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Thompson PD (2003) Exercise and physical activity in the prevention and treatment of atherosclerotic cardiovascular disease. Arterioscler Thromb Vasc Biol 23(8):1319–1321

    Article  CAS  PubMed  Google Scholar 

  16. Swirski FK, Nahrendorf M (2013) Leukocyte behavior in atherosclerosis, myocardial infarction, and heart failure. Science 339(6116):161–166

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Steffens S, Mach F (2004) Inflammation and atherosclerosis. Herz 29(8):741–748

    Article  PubMed  Google Scholar 

  18. Hansson GK, Libby P (2006) The immune response in atherosclerosis: a double-edged sword. Nat Rev Immunol 6(7):508–519

    Article  CAS  PubMed  Google Scholar 

  19. Daniel JM, Sedding DG (2011) Circulating smooth muscle progenitor cells in arterial remodeling. J Mol Cell Cardiol 50(2):273–279

    Article  CAS  PubMed  Google Scholar 

  20. Pedersen BK (2009) The diseasome of physical inactivity--and the role of myokines in muscle--fat cross talk. J Physiol 587(Pt 23):5559–5568

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  21. Chernyavskiy I, Veeranki S, Sen U et al (2016) Atherogenesis: hyperhomocysteinemia interactions with LDL, macrophage function, paraoxonase 1, and exercise. Ann N Y Acad Sci 1363:138–154

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Touati S, Meziri F, Devaux S et al (2011) Exercise reverses metabolic syndrome in high-fat diet-induced obese rats. Med Sci Sports Exerc 43(3):398–407

    Article  CAS  PubMed  Google Scholar 

  23. Szostak J, Laurant P (2011) The forgotten face of regular physical exercise: a ‘natural’ anti-atherogenic activity. Clin Sci (Lond) 121(3):91–106

    Article  Google Scholar 

  24. Hambrecht R, Walther C, Mobius-Winkler S et al (2004) Percutaneous coronary angioplasty compared with exercise training in patients with stable coronary artery disease: a randomized trial. Circulation 109(11):1371–1378

    Article  PubMed  Google Scholar 

  25. O'Connor GT, Buring JE, Yusuf S et al (1989) An overview of randomized trials of rehabilitation with exercise after myocardial infarction. Circulation 80(2):234–244

    Article  PubMed  Google Scholar 

  26. Chung HY, Lee EK, Choi YJ et al (2011) Molecular inflammation as an underlying mechanism of the aging process and age-related diseases. J Dent Res 90(7):830–840

    Article  CAS  PubMed  Google Scholar 

  27. Lesniewski LA, Durrant JR, Connell ML et al (2011) Aerobic exercise reverses arterial inflammation with aging in mice. Am J Physiol Heart Circ Physiol 301(3):H1025–H1032

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Gomes MJ, Martinez PF, Campos DH et al (2016) Beneficial effects of physical exercise on functional capacity and skeletal muscle oxidative stress in rats with aortic stenosis-induced heart failure. Oxidative Med Cell Longev 2016:8695716

    Article  Google Scholar 

  29. Lee J, Cho JY, Kim WK (2014) Anti-inflammation effect of exercise and Korean red ginseng in aging model rats with diet-induced atherosclerosis. Nutr Res Pract 8(3):284–291

    Article  PubMed  PubMed Central  Google Scholar 

  30. Balan M, Locke M (2011) Acute exercise activates myocardial nuclear factor kappa B. Cell Stress Chaperones 16(1):105–111

    Article  CAS  PubMed  Google Scholar 

  31. Parker L, Stepto NK, Shaw CS et al (2016) Acute high-intensity interval exercise-induced redox signaling is associated with enhanced insulin sensitivity in obese middle-aged men. Front Physiol 7:411

    Article  PubMed  PubMed Central  Google Scholar 

  32. Fujii H, Li SH et al (2006) C-reactive protein alters antioxidant defenses and promotes apoptosis in endothelial progenitor cells. Arterioscler Thromb Vasc Biol 26(11):2476–2482

    Article  CAS  PubMed  Google Scholar 

  33. Olson TP, Dengel DR, Leon AS et al (2007) Changes in inflammatory biomarkers following one-year of moderate resistance training in overweight women. Int J Obes 31(6):996–1003

    Article  CAS  Google Scholar 

  34. Hotamisligil GS, Shargill NS, Spiegelman BM (1993) Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 259(5091):87–91

    Article  CAS  PubMed  Google Scholar 

  35. Olson NC, Callas PW, Hanley AJ et al (2012) Circulating levels of TNF-alpha are associated with impaired glucose tolerance, increased insulin resistance, and ethnicity: the Insulin Resistance Atherosclerosis Study. J Clin Endocrinol Metab 97(3):1032–1040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Haddy N, Sass C, Droesch S et al (2003) IL-6, TNF-alpha and atherosclerosis risk indicators in a healthy family population: the STANISLAS cohort. Atherosclerosis 170(2):277–283

    Article  CAS  PubMed  Google Scholar 

  37. Zhang H, Park Y, Wu J et al (2009) Role of TNF-alpha in vascular dysfunction. Clin Sci (Lond) 116(3):219–230

    Article  CAS  Google Scholar 

  38. Roitenberg GE, Sharkhun OO, Ushakova TI et al (2010) Impact of TNF-alpha gene polymorphism, development of atherogenic dyslipidemia and risk of atherosclerosis. Vestn Ross Akad Med Nauk (3):3–6

    Google Scholar 

  39. Uzui H, Harpf A, Liu M et al (2002) Increased expression of membrane type 3-matrix metalloproteinase in human atherosclerotic plaque: role of activated macrophages and inflammatory cytokines. Circulation 106(24):3024–3030

    Article  CAS  PubMed  Google Scholar 

  40. Sloan RP, Shapiro PA, Demeersman RE et al (2007) Aerobic exercise attenuates inducible TNF production in humans. J Appl Physiol (1985) 103(3):1007–1011

    Article  Google Scholar 

  41. Starkie R, Ostrowski SR, Jauffred S et al (2003) Exercise and IL-6 infusion inhibit endotoxin-induced TNF-alpha production in humans. FASEB J 17(8):884–886

    CAS  PubMed  Google Scholar 

  42. Schumacher A, Peersen K, Sommervoll L et al (2006) Physical performance is associated with markers of vascular inflammation in patients with coronary heart disease. Eur J Cardiovasc Prev Rehabil 13(3):356–362

    PubMed  Google Scholar 

  43. Goldhammer E, Tanchilevitch A, Maor I et al (2005) Exercise training modulates cytokines activity in coronary heart disease patients. Int J Cardiol 100(1):93–99

    Article  PubMed  Google Scholar 

  44. Cesari F, Sofi F, Caporale R et al (2009) Relationship between exercise capacity, endothelial progenitor cells and cytochemokines in patients undergoing cardiac rehabilitation. Thromb Haemost 101(3):521–526

    CAS  PubMed  Google Scholar 

  45. Zhang H, Zhang C (2012) Vasoprotection by dietary supplements and exercise: role of TNFalpha signaling. Exp Diabetes Res 2012:972679

    PubMed  Google Scholar 

  46. Halle M, Berg A, Northoff H et al (1998) Importance of TNF-alpha and leptin in obesity and insulin resistance: a hypothesis on the impact of physical exercise. Exerc Immunol Rev 4:77–94

    CAS  PubMed  Google Scholar 

  47. Capria A, De Nardo D, Baffetti FR et al (2010) Long-term anti-TNF-alpha treatments reverse the endothelial dysfunction in rheumatoid arthritis: the biological coherence between synovial and endothelial inflammation. Int J Immunopathol Pharmacol 23(1):255–262

    Article  CAS  PubMed  Google Scholar 

  48. Febbraio MA, Pedersen BK (2002) Muscle-derived interleukin-6: mechanisms for activation and possible biological roles. FASEB J 16(11):1335–1347

    Article  CAS  PubMed  Google Scholar 

  49. Danesh J, Kaptoge S, Mann AG et al (2008) Long-term interleukin-6 levels and subsequent risk of coronary heart disease: two new prospective studies and a systematic review. PLoS Med 5(4):e78

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  50. Steensberg A, Fischer CP, Keller C et al (2003) IL-6 enhances plasma IL-1ra, IL-10, and cortisol in humans. Am J Physiol Endocrinol Metab 285(2):E433–E437

    Article  CAS  PubMed  Google Scholar 

  51. Rahmani M, Cruz RP, Granville DJ et al (2006) Allograft vasculopathy versus atherosclerosis. Circ Res 99(8):801–815

    Article  CAS  PubMed  Google Scholar 

  52. Yokoe T, Minoguchi K, Matsuo H et al (2003) Elevated levels of C-reactive protein and interleukin-6 in patients with obstructive sleep apnea syndrome are decreased by nasal continuous positive airway pressure. Circulation 107(8):1129–1134

    Article  CAS  PubMed  Google Scholar 

  53. Palmefors H, DuttaRoy S, Rundqvist B et al (2014) The effect of physical activity or exercise on key biomarkers in atherosclerosis – a systematic review. Atherosclerosis 235(1):150–161

    Article  CAS  PubMed  Google Scholar 

  54. Novaes RD, Goncalves RV, Penitente AR et al (2016) Modulation of inflammatory and oxidative status by exercise attenuates cardiac morphofunctional remodeling in experimental Chagas cardiomyopathy. Life Sci 152:210–219

    Article  CAS  PubMed  Google Scholar 

  55. Blankenberg S, Luc G, Ducimetiere P et al (2003) Interleukin-18 and the risk of coronary heart disease in European men: the Prospective Epidemiological Study of Myocardial Infarction (PRIME). Circulation 108(20):2453–2459

    Article  CAS  PubMed  Google Scholar 

  56. Tenger C, Sundborger A, Jawien J et al (2005) IL-18 accelerates atherosclerosis accompanied by elevation of IFN-gamma and CXCL16 expression independently of T cells. Arterioscler Thromb Vasc Biol 25(4):791–796

    Article  CAS  PubMed  Google Scholar 

  57. Kohut ML, McCann DA, Russell DW et al (2006) Aerobic exercise, but not flexibility/resistance exercise, reduces serum IL-18, CRP, and IL-6 independent of beta-blockers, BMI, and psychosocial factors in older adults. Brain Behav Immun 20(3):201–209

    Article  CAS  PubMed  Google Scholar 

  58. Pinto A, Di Raimondo D, Tuttolomondo A et al (2012) Effects of physical exercise on inflammatory markers of atherosclerosis. Curr Pharm Des 18(28):4326–4349

    Article  CAS  PubMed  Google Scholar 

  59. Nojima H, Watanabe H, Yamane K et al (2008) Effect of aerobic exercise training on oxidative stress in patients with type 2 diabetes mellitus. Metabolism 57(2):170–176

    Article  CAS  PubMed  Google Scholar 

  60. Leung FP, Yung LM, Laher I et al (2008) Exercise, vascular wall and cardiovascular diseases: an update (Part 1). Sports Med 38(12):1009–1024

    Article  PubMed  Google Scholar 

  61. Yung LM, Laher I, Yao X et al (2009) Exercise, vascular wall and cardiovascular diseases: an update (Part 2). Sports Med 39(1):45–63

    Article  PubMed  Google Scholar 

  62. Gordon L, McGrowder DA, Pena YT et al (2013) Effect of yoga exercise therapy on oxidative stress indicators with end-stage renal disease on hemodialysis. Int J Yoga 6(1):31–38

    Article  PubMed  PubMed Central  Google Scholar 

  63. Yoshida H, Kisugi R (2010) Mechanisms of LDL oxidation. Clin Chim Acta 411(23–24):1875–1882

    Article  CAS  PubMed  Google Scholar 

  64. Araujo JA (2010) Particulate air pollution, systemic oxidative stress, inflammation, and atherosclerosis. Air Qual Atmos Health 4(1):79–93

    Article  PubMed  PubMed Central  Google Scholar 

  65. Rector RS, Warner SO, Liu Y et al (2007) Exercise and diet induced weight loss improves measures of oxidative stress and insulin sensitivity in adults with characteristics of the metabolic syndrome. Am J Physiol Endocrinol Metab 293(2):E500–E506

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Jorde UP, Colombo PC, Ahuja K et al (2007) Exercise-induced increases in oxidized low-density lipoprotein are associated with adverse outcomes in chronic heart failure. J Card Fail 13(9):759–764

    Article  CAS  PubMed  Google Scholar 

  67. Anderson TJ (2003) Nitric oxide, atherosclerosis and the clinical relevance of endothelial dysfunction. Heart Fail Rev 8(1):71–86

    Article  PubMed  Google Scholar 

  68. Ignarro LJ, Buga GM, Wood KS et al (1987) Endothelium-derived relaxing factor produced and released from artery and vein is nitric oxide. Proc Natl Acad Sci U S A 84(24):9265–9269

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Davignon J, Ganz P (2004) Role of endothelial dysfunction in atherosclerosis. Circulation 109(23 Suppl 1):III27–III32

    PubMed  Google Scholar 

  70. Cooke JP, Dzau VJ (1997) Nitric oxide synthase: role in the genesis of vascular disease. Annu Rev Med 48:489–509

    Article  CAS  PubMed  Google Scholar 

  71. Cai H, Harrison DG (2000) Endothelial dysfunction in cardiovascular diseases: the role of oxidant stress. Circ Res 87(10):840–844

    Article  CAS  PubMed  Google Scholar 

  72. Harrison D, Griendling KK, Landmesser U et al (2003) Role of oxidative stress in atherosclerosis. Am J Cardiol 91(3A):7A–11A

    Article  CAS  PubMed  Google Scholar 

  73. Linke A, Erbs S, Hambrecht R (2006) Exercise and the coronary circulation-alterations and adaptations in coronary artery disease. Prog Cardiovasc Dis 48(4):270–284

    Article  CAS  PubMed  Google Scholar 

  74. Silver AE, Beske SD, Christou DD et al (2007) Overweight and obese humans demonstrate increased vascular endothelial NAD(P)H oxidase-p47(phox) expression and evidence of endothelial oxidative stress. Circulation 115(5):627–637

    Article  CAS  PubMed  Google Scholar 

  75. Warnholtz A, Nickenig G, Schulz E et al (1999) Increased NADH-oxidase-mediated superoxide production in the early stages of atherosclerosis: evidence for involvement of the renin-angiotensin system. Circulation 99(15):2027–2033

    Article  CAS  PubMed  Google Scholar 

  76. Laufs U, Wassmann S, Czech T et al (2005) Physical inactivity increases oxidative stress, endothelial dysfunction, and atherosclerosis. Arterioscler Thromb Vasc Biol 25(4):809–814

    Article  CAS  PubMed  Google Scholar 

  77. de Moraes C, Davel AP, Rossoni LV et al (2008) Exercise training improves relaxation response and SOD-1 expression in aortic and mesenteric rings from high caloric diet-fed rats. BMC Physiol 8:12

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  78. Adams V, Linke A, Krankel N et al (2005) Impact of regular physical activity on the NAD(P)H oxidase and angiotensin receptor system in patients with coronary artery disease. Circulation 111(5):555–562

    Article  CAS  PubMed  Google Scholar 

  79. Hambrecht R, Adams V, Erbs S et al (2003) Regular physical activity improves endothelial function in patients with coronary artery disease by increasing phosphorylation of endothelial nitric oxide synthase. Circulation 107(25):3152–3158

    Article  CAS  PubMed  Google Scholar 

  80. Guizoni DM, Dorighello GG, Oliveira HC et al (2016) Aerobic exercise training protects against endothelial dysfunction by increasing nitric oxide and hydrogen peroxide production in LDL receptor-deficient mice. J Transl Med 14(1):213

    Article  PubMed  PubMed Central  Google Scholar 

  81. Roberts CK, Chen AK, Barnard RJ (2007) Effect of a short-term diet and exercise intervention in youth on atherosclerotic risk factors. Atherosclerosis 191(1):98–106

    Article  CAS  PubMed  Google Scholar 

  82. Roberts CK, Vaziri ND, Barnard RJ (2002) Effect of diet and exercise intervention on blood pressure, insulin, oxidative stress, and nitric oxide availability. Circulation 106(20):2530–2532

    Article  CAS  PubMed  Google Scholar 

  83. Tyagi SC, Lominadze D, Roberts AM (2005) Homocysteine in microvascular endothelial cell barrier permeability. Cell Biochem Biophys 43(1):37–44

    Article  CAS  PubMed  Google Scholar 

  84. Tehlivets O (2011) Homocysteine as a risk factor for atherosclerosis: is its conversion to s-adenosyl-L-homocysteine the key to deregulated lipid metabolism? J Lipids 2011:702853

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  85. Naess H, Nyland H, Idicula T et al (2013) C-reactive protein and homocysteine predict long-term mortality in young ischemic stroke patients. J Stroke Cerebrovasc Dis 22(8):e435–e440

    Article  PubMed  Google Scholar 

  86. Signorello MG, Viviani GL, Armani U et al (2007) Homocysteine, reactive oxygen species and nitric oxide in type 2 diabetes mellitus. Thromb Res 120(4):607–613

    Article  CAS  PubMed  Google Scholar 

  87. Tsai JC, Perrella MA, Yoshizumi M et al (1994) Promotion of vascular smooth muscle cell growth by homocysteine: a link to atherosclerosis. Proc Natl Acad Sci U S A 91(14):6369–6373

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  88. Sen U, Mishra PK, Tyagi N et al (2010) Homocysteine to hydrogen sulfide or hypertension. Cell Biochem Biophys 57(2–3):49–58

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  89. Tyagi N, Sedoris KC, Steed M et al (2005) Mechanisms of homocysteine-induced oxidative stress. Am J Physiol Heart Circ Physiol 289(6):H2649–H2656

    Article  CAS  PubMed  Google Scholar 

  90. Rozenberg O, Rosenblat M, Coleman R et al (2003) Paraoxonase (PON1) deficiency is associated with increased macrophage oxidative stress: studies in PON1-knockout mice. Free Radic Biol Med 34(6):774–784

    Article  CAS  PubMed  Google Scholar 

  91. Rozenberg O, Shih DM, Aviram M (2005) Paraoxonase 1 (PON1) attenuates macrophage oxidative status: studies in PON1 transfected cells and in PON1 transgenic mice. Atherosclerosis 181(1):9–18

    Article  CAS  PubMed  Google Scholar 

  92. Rozenberg O, Shih DM, Aviram M (2003) Human serum paraoxonase 1 decreases macrophage cholesterol biosynthesis: possible role for its phospholipase-A2-like activity and lysophosphatidylcholine formation. Arterioscler Thromb Vasc Biol 23(3):461–467

    Article  CAS  PubMed  Google Scholar 

  93. Neuman JC, Albright KA, Schalinske KL (2013) Exercise prevents hyperhomocysteinemia in a dietary folate-restricted mouse model. Nutr Res 33(6):487–493

    Article  CAS  PubMed  Google Scholar 

  94. Veeranki S, Tyagi SC (2013) Defective homocysteine metabolism: potential implications for skeletal muscle malfunction. Int J Mol Sci 14(7):15074–15091

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  95. Veeranki S, Lominadze D, Tyagi SC (2015) Hyperhomocysteinemia inhibits satellite cell regenerative capacity through p38 alpha/beta MAPK signaling. Am J Physiol Heart Circ Physiol 309(2):H325–H334

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  96. Veeranki S, Winchester LJ, Tyagi SC (2015) Hyperhomocysteinemia associated skeletal muscle weakness involves mitochondrial dysfunction and epigenetic modifications. Biochim Biophys Acta 1852(5):732–741

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  97. Pearson JD (2000) Normal endothelial cell function. Lupus 9(3):183–188

    Article  CAS  PubMed  Google Scholar 

  98. Corti R, Hutter R, Badimon JJ et al (2004) Evolving concepts in the triad of atherosclerosis, inflammation and thrombosis. J Thromb Thrombolysis 17(1):35–44

    Article  CAS  PubMed  Google Scholar 

  99. Dod HS, Bhardwaj R, Sajja V et al (2010) Effect of intensive lifestyle changes on endothelial function and on inflammatory markers of atherosclerosis. Am J Cardiol 105(3):362–367

    Article  CAS  PubMed  Google Scholar 

  100. Galetta F, Franzoni F, Plantinga Y et al (2006) Ambulatory blood pressure monitoring and endothelium-dependent vasodilation in the elderly athletes. Biomed Pharmacother 60(8):443–447

    Article  CAS  PubMed  Google Scholar 

  101. Luk TH, Dai YL, Siu CW et al (2009) Habitual physical activity is associated with endothelial function and endothelial progenitor cells in patients with stable coronary artery disease. Eur J Cardiovasc Prev Rehabil 16(4):464–471

    Article  PubMed  Google Scholar 

  102. Gielen S, Schuler G, Hambrecht R (2001) Exercise training in coronary artery disease and coronary vasomotion. Circulation 103(1):e1–e6

    Article  CAS  PubMed  Google Scholar 

  103. Ribeiro F, Alves AJ, Duarte JA et al (2010) Is exercise training an effective therapy targeting endothelial dysfunction and vascular wall inflammation? Int J Cardiol 141(3):214–221

    Article  PubMed  Google Scholar 

  104. Hamburg NM, McMackin CJ, Huang AL et al (2007) Physical inactivity rapidly induces insulin resistance and microvascular dysfunction in healthy volunteers. Arterioscler Thromb Vasc Biol 27(12):2650–2656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  105. Gonzalez A, Silva E, Villasmil J et al (2015) 3b.04: impaired endothelial vasodilator function in normotensive adolescents with exaggerated exercise blood pressure response. J Hypertens 33(Suppl 1):e35

    Article  PubMed  Google Scholar 

  106. Pellegrin M, Alonso F, Aubert JF et al (2009) Swimming prevents vulnerable atherosclerotic plaque development in hypertensive 2-kidney, 1-clip mice by modulating angiotensin II type 1 receptor expression independently from hemodynamic changes. Hypertension 53(5):782–789

    Article  CAS  PubMed  Google Scholar 

  107. Lambert BS, Greene NP, Carradine AT et al (2014) Aquatic treadmill training reduces blood pressure reactivity to physical stress. Med Sci Sports Exerc 46(4):809–816

    Article  PubMed  Google Scholar 

  108. Faria Tde O, Targueta GP, Angeli JK et al (2010) Acute resistance exercise reduces blood pressure and vascular reactivity, and increases endothelium-dependent relaxation in spontaneously hypertensive rats. Eur J Appl Physiol 110(2):359–366

    Article  PubMed  Google Scholar 

  109. Gielen S, Erbs S, Linke A et al (2003) Home-based versus hospital-based exercise programs in patients with coronary artery disease: effects on coronary vasomotion. Am Heart J 145(1):E3

    Article  PubMed  Google Scholar 

  110. Luk TH, Dai YL, Siu CW et al (2012) Effect of exercise training on vascular endothelial function in patients with stable coronary artery disease: a randomized controlled trial. Eur J Prev Cardiol 19(4):830–839

    Article  PubMed  Google Scholar 

  111. Sixt S, Beer S, Bluher M et al (2010) Long- but not short-term multifactorial intervention with focus on exercise training improves coronary endothelial dysfunction in diabetes mellitus type 2 and coronary artery disease. Eur Heart J 31(1):112–119

    Article  CAS  PubMed  Google Scholar 

  112. Maiorana A, O'Driscoll G, Cheetham C et al (2001) The effect of combined aerobic and resistance exercise training on vascular function in type 2 diabetes. J Am Coll Cardiol 38(3):860–866

    Article  CAS  PubMed  Google Scholar 

  113. Schjerve IE, Tyldum GA, Tjonna AE et al (2008) Both aerobic endurance and strength training programmes improve cardiovascular health in obese adults. Clin Sci (Lond) 115(9):283–293

    Article  Google Scholar 

  114. Woo KS, Chook P, CW Y et al (2004) Effects of diet and exercise on obesity-related vascular dysfunction in children. Circulation 109(16):1981–1986

    Article  PubMed  Google Scholar 

  115. Green DJ, Walsh JH, Maiorana A et al (2003) Exercise-induced improvement in endothelial dysfunction is not mediated by changes in CV risk factors: pooled analysis of diverse patient populations. Am J Physiol Heart Circ Physiol 285(6):H2679–H2687

    Article  CAS  PubMed  Google Scholar 

  116. Green DJ, O'Driscoll G, Joyner MJ et al (2008) Exercise and cardiovascular risk reduction: time to update the rationale for exercise? J Appl Physiol (1985) 105(2):766–768

    Article  Google Scholar 

  117. Lewis TV, Dart AM, Chin-Dusting JP et al (1999) Exercise training increases basal nitric oxide production from the forearm in hypercholesterolemic patients. Arterioscler Thromb Vasc Biol 19(11):2782–2787

    Article  CAS  PubMed  Google Scholar 

  118. Faggiotto A, Ross R, Harker L (1984) Studies of hypercholesterolemia in the nonhuman primate. I. Changes that lead to fatty streak formation. Arteriosclerosis 4(4):323–340

    Article  CAS  PubMed  Google Scholar 

  119. Masuda J, Ross R (1990) Atherogenesis during low level hypercholesterolemia in the nonhuman primate. I. Fatty streak formation. Arteriosclerosis 10(2):164–177

    Article  CAS  PubMed  Google Scholar 

  120. Bevilacqua MP, Nelson RM, Mannori G et al (1994) Endothelial-leukocyte adhesion molecules in human disease. Annu Rev Med 45:361–378

    Article  CAS  PubMed  Google Scholar 

  121. Wegge JK, Roberts CK, Ngo TH et al (2004) Effect of diet and exercise intervention on inflammatory and adhesion molecules in postmenopausal women on hormone replacement therapy and at risk for coronary artery disease. Metabolism 53(3):377–381

    Article  CAS  PubMed  Google Scholar 

  122. Adamopoulos S, Parissis J, Kroupis C et al (2001) Physical training reduces peripheral markers of inflammation in patients with chronic heart failure. Eur Heart J 22(9):791–797

    Article  CAS  PubMed  Google Scholar 

  123. Bjornstad HH, Bruvik J, Bjornstad AB et al (2008) Exercise training decreases plasma levels of soluble CD40 ligand and P-selectin in patients with chronic heart failure. Eur J Cardiovasc Prev Rehabil 15(1):43–48

    Article  PubMed  Google Scholar 

  124. Yang AL, Chen HI (2003) Chronic exercise reduces adhesion molecules/iNOS expression and partially reverses vascular responsiveness in hypercholesterolemic rabbit aortae. Atherosclerosis 169(1):11–17

    Article  CAS  PubMed  Google Scholar 

  125. Ando J, Tsuboi H, Korenaga R et al (1994) Shear stress inhibits adhesion of cultured mouse endothelial cells to lymphocytes by downregulating VCAM-1 expression. Am J Physiol 267(3 Pt 1):C679–C687

    CAS  PubMed  Google Scholar 

  126. Dimmeler S, Haendeler J, Rippmann V et al (1996) Shear stress inhibits apoptosis of human endothelial cells. FEBS Lett 399(1-2):71–74

    Article  CAS  PubMed  Google Scholar 

  127. Inoue N, Ramasamy S, Fukai T et al (1996) Shear stress modulates expression of Cu/Zn superoxide dismutase in human aortic endothelial cells. Circ Res 79(1):32–37

    Article  CAS  PubMed  Google Scholar 

  128. Stitt AW, He C, Friedman S et al (1997) Elevated AGE-modified ApoB in sera of euglycemic, normolipidemic patients with atherosclerosis: relationship to tissue AGEs. Mol Med 3(9):617–627

    CAS  PubMed  PubMed Central  Google Scholar 

  129. Winkles JA, Alberts GF, Brogi E et al (1993) Endothelin-1 and endothelin receptor mRNA expression in normal and atherosclerotic human arteries. Biochem Biophys Res Commun 191(3):1081–1088

    Article  CAS  PubMed  Google Scholar 

  130. Zeiher AM, Goebel H, Schachinger V et al (1995) Tissue endothelin-1 immunoreactivity in the active coronary atherosclerotic plaque. A clue to the mechanism of increased vasoreactivity of the culprit lesion in unstable angina. Circulation 91(4):941–947

    Article  CAS  PubMed  Google Scholar 

  131. Maeda S, Miyauchi T, Iemitsu M et al (2004) Resistance exercise training reduces plasma endothelin-1 concentration in healthy young humans. J Cardiovasc Pharmacol 44(Suppl 1):S443–S446

    Article  CAS  PubMed  Google Scholar 

  132. Maeda S, Tanabe T, Miyauchi T et al (2003) Aerobic exercise training reduces plasma endothelin-1 concentration in older women. J Appl Physiol (1985) 95(1):336–341

    Article  CAS  Google Scholar 

  133. Aqel NM, Ball RY, Waldmann H et al (1985) Identification of macrophages and smooth muscle cells in human atherosclerosis using monoclonal antibodies. J Pathol 146(3):197–204

    Article  CAS  PubMed  Google Scholar 

  134. Jonasson L, Holm J, Skalli O et al (1986) Regional accumulations of T cells, macrophages, and smooth muscle cells in the human atherosclerotic plaque. Arteriosclerosis 6(2):131–138

    Article  CAS  PubMed  Google Scholar 

  135. Chinetti-Gbaguidi G, Baron M, Bouhlel MA et al (2011) Human atherosclerotic plaque alternative macrophages display low cholesterol handling but high phagocytosis because of distinct activities of the PPARgamma and LXRalpha pathways. Circ Res 108(8):985–995

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  136. Martinez FO, Helming L, Gordon S (2009) Alternative activation of macrophages: an immunologic functional perspective. Annu Rev Immunol 27:451–483

    Article  CAS  PubMed  Google Scholar 

  137. Colin S, Chinetti-Gbaguidi G, Staels B (2014) Macrophage phenotypes in atherosclerosis. Immunol Rev 262(1):153–166

    Article  CAS  PubMed  Google Scholar 

  138. Hirata Y, Tabata M, Kurobe H et al (2011) Coronary atherosclerosis is associated with macrophage polarization in epicardial adipose tissue. J Am Coll Cardiol 58(3):248–255

    Article  CAS  PubMed  Google Scholar 

  139. Mantovani A, Biswas SK, Galdiero MR et al (2013) Macrophage plasticity and polarization in tissue repair and remodelling. J Pathol 229(2):176–185

    Article  CAS  PubMed  Google Scholar 

  140. Khallou-Laschet J, Varthaman A, Fornasa G et al (2010) Macrophage plasticity in experimental atherosclerosis. PLoS One 5(1):e8852

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  141. Lee SJ, Lee YS, Seo KW et al (2012) Homocysteine enhances MMP-9 production in murine macrophages via ERK and Akt signaling pathways. Toxicol Appl Pharmacol 260(1):89–94

    Article  CAS  PubMed  Google Scholar 

  142. Winchester LJ, Veeranki S, Givvimani S et al (2015) Homocysteine elicits an M1 phenotype in murine macrophages through an EMMPRIN-mediated pathway. Can J Physiol Pharmacol 93(7):577–584

    Article  CAS  PubMed  Google Scholar 

  143. Yasmin MECM, Wallace S et al (2005) Matrix metalloproteinase-9 (MMP-9), MMP-2, and serum elastase activity are associated with systolic hypertension and arterial stiffness. Arterioscler Thromb Vasc Biol 25(2):372

    Article  CAS  PubMed  Google Scholar 

  144. Bescond A, Augier T, Chareyre C et al (1999) Influence of homocysteine on matrix metalloproteinase-2: activation and activity. Biochem Biophys Res Commun 263(2):498–503

    Article  CAS  PubMed  Google Scholar 

  145. Pinto PR, Rocco DD, Okuda LS et al (2015) Aerobic exercise training enhances the in vivo cholesterol trafficking from macrophages to the liver independently of changes in the expression of genes involved in lipid flux in macrophages and aorta. Lipids Health Dis 14:109

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  146. Kadoglou NP, Kostomitsopoulos N, Kapelouzou A et al (2011) Effects of exercise training on the severity and composition of atherosclerotic plaque in apoE-deficient mice. J Vasc Res 48(4):347–356

    Article  CAS  PubMed  Google Scholar 

  147. Kadoglou NP, Moustardas P, Kapelouzou A et al (2013) The anti-inflammatory effects of exercise training promote atherosclerotic plaque stabilization in apolipoprotein E knockout mice with diabetic atherosclerosis. Eur J Histochem 57(1):e3

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  148. Moustardas P, Kadoglou NP, Katsimpoulas M et al (2013) The complementary effects of atorvastatin and exercise treatment on the composition and stability of the atherosclerotic plaques in ApoE knockout mice. PLoS One 9(9):e108240

    Article  CAS  Google Scholar 

  149. Naghavi M, Libby P, Falk E et al (2003) From vulnerable plaque to vulnerable patient: a call for new definitions and risk assessment strategies: Part I. Circulation 108(14):1664–1672

    Article  PubMed  Google Scholar 

  150. Napoli C, Williams-Ignarro S, de Nigris F et al (2006) Physical training and metabolic supplementation reduce spontaneous atherosclerotic plaque rupture and prolong survival in hypercholesterolemic mice. Proc Natl Acad Sci U S A 103(27):10479–10484

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  151. Pellegrin M, Miguet-Alfonsi C, Bouzourene K et al (2009) Long-term exercise stabilizes atherosclerotic plaque in ApoE knockout mice. Med Sci Sports Exerc 41(12):2128–2135

    Article  CAS  PubMed  Google Scholar 

  152. Moustardas P, Kadoglou NP, Katsimpoulas M et al (2014) The complementary effects of atorvastatin and exercise treatment on the composition and stability of the atherosclerotic plaques in ApoE knockout mice. PLoS One 9(9):e108240

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  153. Lusis AJ (2000) Atherosclerosis. Nature 407(6801):233–241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  154. Kolodgie FD, Burke AP, Skorija KS et al (2006) Lipoprotein-associated phospholipase A2 protein expression in the natural progression of human coronary atherosclerosis. Arterioscler Thromb Vasc Biol 26(11):2523–2529

    Article  CAS  PubMed  Google Scholar 

  155. Lind L, Simon T, Johansson L et al (2012) Circulating levels of secretory- and lipoprotein-associated phospholipase A2 activities: relation to atherosclerotic plaques and future all-cause mortality. Eur Heart J 33(23):2946–2954

    Article  CAS  PubMed  Google Scholar 

  156. Verona J, Gilligan LE, Gimenez C et al (2013) Physical activity and cardiometabolic risk in male children and adolescents: the Balcarce study. Life Sci 93(2–3):64–68

    Article  CAS  PubMed  Google Scholar 

  157. Wooten JS, Nambi P, Gillard BK et al (2013) Intensive lifestyle modification reduces Lp-PLA2 in dyslipidemic HIV/HAART patients. Med Sci Sports Exerc 45(6):1043–1050

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  158. Reddy KJ, Singh M, Batsell RR et al (2010) Lipoprotein-associated phospholipase A2 mass is significantly reduced in dyslipidemic patients treated with lifestyle modification and combination lipid-modifying drug therapy. Prev Cardiol 13(3):130–134

    CAS  PubMed  Google Scholar 

  159. Alpert MA (1999) Homocyst(e)ine, atherosclerosis, and thrombosis. South Med J 92(9):858–865

    Article  CAS  PubMed  Google Scholar 

  160. Konecky N, Malinow MR, Tunick PA et al (1997) Correlation between plasma homocyst(e)ine and aortic atherosclerosis. Am Heart J 133(5):534–540

    Article  CAS  PubMed  Google Scholar 

  161. XQ W, Ding J, Ge AY et al (2014) Acute phase homocysteine related to severity and outcome of atherothrombotic stroke – reply. Eur J Intern Med 25(1):e15

    Article  CAS  Google Scholar 

  162. Davies EJ, Moxham T, Rees K et al (2010) Exercise training for systolic heart failure: Cochrane systematic review and meta-analysis. Eur J Heart Fail 12(7):706–715

    Article  PubMed  PubMed Central  Google Scholar 

  163. Piepoli MF, Davos C, Francis DP et al (2004) Exercise training meta-analysis of trials in patients with chronic heart failure (ExTraMATCH). BMJ 328(7433):189

    Article  CAS  PubMed  Google Scholar 

  164. Taylor RS, Brown A, Ebrahim S et al (2004) Exercise-based rehabilitation for patients with coronary heart disease: systematic review and meta-analysis of randomized controlled trials. Am J Med 116(10):682–692

    Article  PubMed  Google Scholar 

  165. Lee DC, Pate RR, Lavie CJ et al (2014) Leisure-time running reduces all-cause and cardiovascular mortality risk. J Am Coll Cardiol 64(5):472–481

    Article  PubMed  PubMed Central  Google Scholar 

  166. Kroger K, Lehmann N, Rappaport L et al (2011) Carotid and peripheral atherosclerosis in male marathon runners. Med Sci Sports Exerc 43(7):1142–1147

    Article  PubMed  Google Scholar 

  167. Taylor BA, Zaleski AL, Capizzi JA et al (2014) Influence of chronic exercise on carotid atherosclerosis in marathon runners. BMJ Open 4(2):e004498

    Article  PubMed  PubMed Central  Google Scholar 

  168. Wen CP, Wai JP, Tsai MK et al (2011) Minimum amount of physical activity for reduced mortality and extended life expectancy: a prospective cohort study. Lancet 378(9798):1244–1253

    Article  PubMed  Google Scholar 

  169. Paffenbarger RS Jr, Hyde RT, Wing AL et al (1993) The association of changes in physical-activity level and other lifestyle characteristics with mortality among men. N Engl J Med 328(8):538–545

    Article  PubMed  Google Scholar 

  170. Sofi F, Capalbo A, Cesari F et al (2008) Physical activity during leisure time and primary prevention of coronary heart disease: an updated meta-analysis of cohort studies. Eur J Cardiovasc Prev Rehabil 15(3):247–257

    Article  PubMed  Google Scholar 

  171. Sattelmair J, Pertman J, Ding EL et al (2011) Dose response between physical activity and risk of coronary heart disease: a meta-analysis. Circulation 124(7):789–795

    Article  PubMed  PubMed Central  Google Scholar 

  172. Baggish AL, Wang F, Weiner RB et al (2008) Training-specific changes in cardiac structure and function: a prospective and longitudinal assessment of competitive athletes. J Appl Physiol (1985) 104(4):1121–1128

    Article  Google Scholar 

  173. Kim JH, Baggish AL (2016) Differentiating exercise-induced cardiac adaptations from cardiac pathology: the “Grey zone” of clinical uncertainty. Can J Cardiol 32(4):429–437

    Article  PubMed  Google Scholar 

  174. Schnohr P, O'Keefe JH, Marott JL et al (2015) Dose of jogging and long-term mortality: the Copenhagen City Heart Study. J Am Coll Cardiol 65(5):411–419

    Article  PubMed  Google Scholar 

  175. Andersen K, Farahmand B, Ahlbom A et al (2013) Risk of arrhythmias in 52 755 long-distance cross-country skiers: a cohort study. Eur Heart J 34(47):3624–3631

    Article  PubMed  Google Scholar 

  176. La Gerche A, Burns AT, Mooney DJ et al (2012) Exercise-induced right ventricular dysfunction and structural remodelling in endurance athletes. Eur Heart J 33(8):998–1006

    Article  PubMed  CAS  Google Scholar 

  177. James CA, Bhonsale A, Tichnell C et al (2013) Exercise increases age-related penetrance and arrhythmic risk in arrhythmogenic right ventricular dysplasia/cardiomyopathy-associated desmosomal mutation carriers. J Am Coll Cardiol 62(14):1290–1297

    Article  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by the grants from Shanghai Key Discipline Construction Grant (ZK2012A40) and National Natural Science Foundation of China (81672260).

Competing Financial Interests

The authors declare no competing financial interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fu Zhu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2017 Springer Nature Singapore Pte Ltd.

About this chapter

Cite this chapter

Yang, J., Cao, R.Y., Gao, R., Mi, Q., Dai, Q., Zhu, F. (2017). Physical Exercise Is a Potential “Medicine” for Atherosclerosis. In: Xiao, J. (eds) Exercise for Cardiovascular Disease Prevention and Treatment. Advances in Experimental Medicine and Biology, vol 999. Springer, Singapore. https://doi.org/10.1007/978-981-10-4307-9_15

Download citation

Publish with us

Policies and ethics