Skip to main content

Ability of Periostin as a New Biomarker of Idiopathic Pulmonary Fibrosis

  • Chapter
  • First Online:
Periostin

Part of the book series: Advances in Experimental Medicine and Biology ((AEMB,volume 1132))

Abstract

The primarily pathogenesis of IPF, an incurable respiratory disease is believed to over-repair to lung injury. The development of new drugs for IPF has increased the necessity of identifying biomarkers for predicting clinical behavior and the selection of the appropriate treatment strategy for individual patient.

We and another group found that periostin, a matricellular protein expressed specifically in areas of ongoing fibrotic lesions, such as fibroblastic foci in lung tissues from human IPF or murine bleomycin-induced lung injury models. Murine bleomycin-induced lung injury was improved by the constant suppression of periostin expression and treatment with neutralizing anti-periostin antibodies at the fibroproliferative phase. Moreover, total periostin can predict both short-term declines of pulmonary function and overall survival in IPF patients. Our group also established a new enzyme-linked immunosorbent assay (ELISA) kit that is more specific for IPF compared with the conventional kit. This new periostin ELISA kit specifically detects monomeric form, whereas the conventional kit detects both monomeric and oligomeric forms. The monomeric periostin levels can be used to predict pulmonary function decline and to distinguish IPF patients from healthy controls.

In conclusion, periostin may play an important role in fibrogenesis and could be a potential biomarker for predicting disease progression and therapeutic effect in IPF patients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ryerson CJ, Collard HR (2013) Update on the diagnosis and classification of ILD. Curr Opin Pulm Med 19:453–459

    Article  Google Scholar 

  2. Travis WD, Costabel U, Hansell DM et al (2013) An official American Thoracic Society/European Respiratory Society statement: update of the international multidisciplinary classification of the idiopathic interstitial pneumonias. Am J Respir Crit Care Med 188:733–748

    Article  Google Scholar 

  3. Mathai SC, Danoff SK (2016) Management of interstitial lung disease associated with connective tissue disease. BMJ 352:h6819

    Article  Google Scholar 

  4. Raghu G, Collard HR, Egan JJ et al (2011) An official ATS/ERS/JRS/ALAT statement: idiopathic pulmonary fibrosis: evidence-based guidelines for diagnosis and management. Am J Respir Crit Care Med 183:788–824

    Article  Google Scholar 

  5. Raghu G, Rochwerg B, Zhang Y et al (2011) An official ATS/ERS/JRS/ALAT clinical practice guideline: treatment of idiopathic pulmonary fibrosis. An update of the 2011 clinical practice guideline. Am J Respir Crit Care Med 192:e3–e19

    Article  Google Scholar 

  6. Fernández Pérez ER, Daniels CE, Schroeder DR et al (2010) Incidence, prevalence, and clinical course of idiopathic pulmonary fibrosis: a population-based study. Chest 137:129–137

    Article  Google Scholar 

  7. Collard HR, Moore BB, Flaherty KR et al (2007) Idiopathic pulmonary fibrosis clinical research network investigators. Acute exacerbations of idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 176:636–643

    Article  Google Scholar 

  8. Song JW, Hong SB, Lim CM et al (2011) Acute exacerbation of idiopathic pulmonary fibrosis: incidence, risk factors and outcome. Eur Respir J 37:356–363

    Article  CAS  Google Scholar 

  9. Kim DS, Park JH, Park BK et al (2006) Acute exacerbation of idiopathic pulmonary fibrosis: frequency and clinical features. Eur Respir J 27:143–150

    Article  CAS  Google Scholar 

  10. Strieter RM, Mehrad B (2009) New mechanisms of pulmonary fibrosis. Chest 136:1364–1370

    Article  Google Scholar 

  11. Ahluwalia N, Shea BS, Tager AM (2014) New therapeutic targets in idiopathic pulmonary fibrosis. Aiming to rein in runaway wound-healing responses. Am J Respir Crit Care Med 190:867–878

    Article  CAS  Google Scholar 

  12. Scotton CJ, Chambers RC (2007) Molecular targets in pulmonary fibrosis: the myofibroblast in focus. Chest 132:1311–1321

    Article  Google Scholar 

  13. King TE Jr, Schwarz MI, Brown K et al (2001) Idiopathic pulmonary fibrosis: relationship between histopathologic features and mortality. Am J Respir Crit Care Med 164:1025–1032

    Article  Google Scholar 

  14. Nicholson AG, Fulford LG, Colby TV et al (2002) The relationship between individual histologic features and disease progression in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 166:173–177

    Article  Google Scholar 

  15. Border WA, Noble NA (1994) Transforming growth factor beta in tissue fibrosis. N Engl J Med 331:1286–1292

    Article  CAS  Google Scholar 

  16. Jakubzick C, Choi ES, Kunkel SL et al (2004) Augmented pulmonary IL-4 and IL-13 receptor subunit expression in idiopathic interstitial pneumonia. J Clin Pathol 57:477–486

    Article  CAS  Google Scholar 

  17. Lee CG, Homer RJ, Zhu Z et al (2001) Interleukin-13 induces tissue fibrosis by selectively stimulating and activating transforming growth factor beta(1). J Exp Med 194:809–821

    Article  CAS  Google Scholar 

  18. Richeldi L, du Bois RM, Raghu G et al (2014) Efficacy and safety of nintedanib in idiopathic pulmonary fibrosis. N Engl J Med 370:2071–2082

    Article  Google Scholar 

  19. King TE Jr, Bradford WZ, Castro-Bernardini S et al (2014) A phase 3 trial of pirfenidone in patients with idiopathic pulmonary fibrosis. N Engl J Med 370:2083–2092

    Article  Google Scholar 

  20. Raghu G, Scholand MB, de Andrade J et al (2016) FG-3019 anti-connective tissue growth factor monoclonal antibody: results of an open-label clinical trial in idiopathic pulmonary fibrosis. Eur Respir J 47:1481–1491

    Article  Google Scholar 

  21. Maher TM, van der Aar EM, Van de Steen O et al (2018) Safety, tolerability, pharmacokinetics, and pharmacodynamics of GLPG1690, a novel autotaxin inhibitor, to treat idiopathic pulmonary fibrosis (FLORA): a phase 2a randomised placebo-controlled trial. Lancet Respir Med 6:627–635

    Article  CAS  Google Scholar 

  22. Raghu G, van den Blink B, Hamblin MJ et al (2018) Effect of recombinant human pentraxin 2 vs placebo on change in forced vital capacity in patients with idiopathic pulmonary fibrosis: a randomized clinical trial. JAMA 319:2299–2307

    Article  CAS  Google Scholar 

  23. Latsi PI, du Bois RM, Nicholson AG, Colby TV, Bisirtzoglou D, Nikolakopoulou A, Veeraraghavan S, Hansel DM, Wells AU (2003) Fibrotic idiopathic interstitial pneumonia: the prognostic value of longitudinal functional trends. Am J Respir Crit Care Med 168:531–537

    Article  Google Scholar 

  24. Flaherty KR, Mumford JA, Murray S et al (2003) Prognostic implications of physiologic and radiographic changes in idiopathic interstitial pneumonia. Am J Respir Crit Care Med 168:543–548

    Article  Google Scholar 

  25. Ley B, Collard HR, King TE Jr (2011) Clinical course and prediction of survival in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 183:431–440

    Article  Google Scholar 

  26. Ley B, Brown KK, Collard HR (2014) Molecular biomarkers in idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 307:L681–L691

    Article  CAS  Google Scholar 

  27. Prasse A, Probst C, Bargagli E et al (2009) Serum CC-chemokine ligand 18 concentration predicts outcome in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 179:717–723

    Article  CAS  Google Scholar 

  28. Rosas IO, Richards TJ, Konishi K et al (2008) MMP1 and MMP7 as potential peripheral blood biomarkers in idiopathic pulmonary fibrosis. PLoS Med 5:e93

    Article  Google Scholar 

  29. Yokoyama A, Kondo K, Nakajima M et al (2006) Prognostic value of circulating KL-6 in idiopathic pulmonary fibrosis. Respirology 11:164–168

    Article  Google Scholar 

  30. Takahashi H, Fujishima T, Koba H et al (2000) Serum surfactant proteins a and D as prognostic factors in idiopathic pulmonary fibrosis and their relationship to disease extent. Am J Respir Crit Care Med 162:1109–1114

    Article  CAS  Google Scholar 

  31. Ishikawa N, Hattori N, Yokoyama A et al (2012) Utility of KL-6/MUC1 in the clinical management of interstitial lung diseases. Respir Investig 50:3–13

    Article  Google Scholar 

  32. Brownell R, Kaminski N, Woodruff PG et al (2016) Precision medicine: the new frontier in idiopathic pulmonary fibrosis. Am J Respir Crit Care Med 193:1213–1218

    Article  CAS  Google Scholar 

  33. Conway SJ, Izuhara K, Kudo Y et al (2014) The role of periostin in tissue remodeling across health and disease. Cell Mol Life Sci 71:1279–1288

    Article  CAS  Google Scholar 

  34. Izuhara K, Nunomura S, Nanri Y et al (2017) Periostin in inflammation and allergy. Cell Mol Life Sci 74:4293–4303

    Article  CAS  Google Scholar 

  35. Takayama G, Arima K, Kanaji T et al (2006) Periostin: a novel component of subepithelial fibrosis of bronchial asthma downstream of IL-4 and IL-13 signals. J Allergy Clin Immunol 118:98–104

    Article  CAS  Google Scholar 

  36. Yamaguchi Y, Ono J, Masuoka M et al (2013) Serum periostin levels are correlated with progressive skin sclerosis in patients with systemic sclerosis. Br J Dermatol 168:717–725

    Article  CAS  Google Scholar 

  37. Yang L, Serada S, Fujimoto M et al (2012) Periostin facilitates skin sclerosis via PI3K/Akt dependent mechanism in a mouse model of scleroderma. PLoS One 7:e41994

    Article  CAS  Google Scholar 

  38. Okamoto M, Hoshino T, Kitasato Y et al (2011) Periostin, a matrix protein, is a novel biomarker for idiopathic interstitial pneumonias. Eur Respir J 37:1119–1127

    Article  CAS  Google Scholar 

  39. Uchida M, Shiraishi H, Ohta S et al (2012) Periostin, a matricellular protein, plays a role in the induction of chemokines in pulmonary fibrosis. Am J Respir Cell Mol Biol 46:677–686

    Article  CAS  Google Scholar 

  40. Naik PK, Bozyk PD, Bentley JK et al (2012) Periostin promotes fibrosis and predicts progression in patients with idiopathic pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 303:L1046–L1056

    Article  CAS  Google Scholar 

  41. Ashley SL, Wilke CA, Kim KK et al (2017) Periostin regulates fibrocyte function to promote myofibroblast differentiation and lung fibrosis. Mucosal Immunol 10:341–351

    Article  CAS  Google Scholar 

  42. Nance T, Smith KS, Anaya V et al (2014) Transcriptome analysis reveals differential splicing events in IPF lung tissue. PLoS One 9:e92111

    Article  Google Scholar 

  43. Tajiri M, Okamoto M, Fujimoto K et al (2015) Serum level of periostin can predict long-term outcome of idiopathic pulmonary fibrosis. Respir Investig 53:73–81

    Article  Google Scholar 

  44. Ohta S, Okamoto M, Fujimoto K et al (2017) The usefulness of monomeric periostin as a biomarker for idiopathic pulmonary fibrosis. PLoS One 12:e0174547

    Article  Google Scholar 

  45. Moore BB, Hogaboam CM (2008) Murine models of pulmonary fibrosis. Am J Physiol Lung Cell Mol Physiol 294:L152–L160

    Article  CAS  Google Scholar 

  46. Neighbors M, Cabanski CR, Ramalingam TR et al (2018) Prognostic and predictive biomarkers for patients with idiopathic pulmonary fibrosis treated with pirfenidone: post-hoc assessment of the CAPACITY and ASCEND trials. Lancet Respir Med 6:615–626

    Article  Google Scholar 

  47. Takahashi F, Takahashi K, Okazaki T et al (2001) Role of osteopontin in the pathogenesis of bleomycin-induced pulmonary fibrosis. Am J Respir Cell Mol Biol 24:264–271

    Article  CAS  Google Scholar 

Download references

Acknowledgment

We thank the colleagues and collaborators as follows: Kiminori Fujimoto, Koichi Ohshima, Tomotaka Kawayama, Yasuhiko Kitasato, Yuki Sakazaki, Morihiro Tajiri (Kurume University), Koichiro Takahashi, Shinichiro Hayashi, Masaru Uchida, Hiroshi Shiraishi, Kazuto Taniguchi, Shoichi Suzuki, Atsushi Kawaguchi (Saga University), Shigeki Kohno, Noriho Sakamoto (Nagasaki University), Junichi Kadota (Oita University), Masayuki Hanaoka, Hiroshi Yamamoto (Shinshu University), Masao Ichiki (Kyushu Medical Center), Hisako Kushima, Hiroshi Ishii (Fukuoka University), Keiichi Akasaka (Nigata Universtity Medical and Dental Hospital), Hironori Sagara (Syowa University), Takeshi Johkoh (Kinki Central Hospital), Seiya Kato (Saiseikai Fukuoka General Hospital), Hisako Matsumoto (Kyoto University), Yukie Yamaguchi, Michiko Aihara (Yokohama City University), Ayami Kamei, Yoshinori Azuma (Shino-Test Corp.), Simon J. Conway (Indiana University).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Masaki Okamoto .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2019 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Okamoto, M., Izuhara, K., Ohta, S., Ono, J., Hoshino, T. (2019). Ability of Periostin as a New Biomarker of Idiopathic Pulmonary Fibrosis. In: Kudo, A. (eds) Periostin. Advances in Experimental Medicine and Biology, vol 1132. Springer, Singapore. https://doi.org/10.1007/978-981-13-6657-4_9

Download citation

Publish with us

Policies and ethics