Skip to main content
Log in

Signals controlling renin release in aglomerular toadfish

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

The toadfish,Opsanus tau, lacks renal glomeruli and macula densa, but has high renal renin activity and abundant granulated cells in renal arteries and arterioles. Reduction of blood pressure (BP) or blood volume by hemorrhage or vasodilatory drugs causes renin release, indicating that an intrarenal or extrarenal pressure- or volume-sensitive mechanism exists for controlling renin release in the toadfish. Thus, we examined whether 1) β-adrenergic receptor-mediated activation of renin release, and 2) calcium influx which may underlie the baroreceptor mechanism are involved in the cellular control of renin release. Acute injection of isoproterenol (1 μg/kg, n = 6) decreased BP and increased plasma renin activity (PRA) 4–5 fold in unanesthetized toadfish. Propranolol abolished both effects, but did not decrease basal PRA levels.In vitro superfusion of renal slices with bicarbonate Ringer's solution showed a steady secretion of renin, and addition of 50 mM K+ (K+ methylsulfate replacing NaCl, n = 10) to the superfusate markedly suppressed renin secretion. Nifedipine (10−5 M, n = 8) completely restored the high K+-induced inhibition of renin secretion from renal slices, whereas isoproterenol (10−4 M, n = 6) neither increased basal renin secretion nor restored K+-induced renin suppression. These results suggest that calcium influx may mediate inhibitory messages for renin secretion, while the β-adrenoceptor-mediated activation of granulated cells appears absent in toadfish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Burnstock, G. 1969. Evolution of the autonomic innervation of visceral and cardiovascular systems in vertebrates. Pharmacol. Rev. 21: 247–324.

    PubMed  CAS  Google Scholar 

  • Churchill, P.C. 1985. Second messengers in renin secretion. Am. J. Physiol. 249: F175–F184.

    PubMed  CAS  Google Scholar 

  • Churchill, P.C. 1987. Calcium channel antagonists and renin release. Am. J. Nephrol. 7: 32–38.

    PubMed  Google Scholar 

  • Churchill, P.C. and Churchill, M.C. 1982a. Isoproterenol-stimulated renin secretion in the rat: second messenger roles of Ca and cyclic AMP. Life Sci. 30: 1313–1319.

    Article  PubMed  CAS  Google Scholar 

  • Churchill, P.C. and Churchill, M.C. 1982b. Ca-dependence of the inhibitory effect of K-depolarization on renin secretion from rat kidney slices. Arch. Int. Pharmacodyn. 258: 300–312.

    PubMed  CAS  Google Scholar 

  • Churchill, P.C. and Churchill, M.C. 1987. Bay K 8644, a calcium channel agonist, inhibits renin secretion in vitro Arch. Int. Pharmacol. Therap. 285: 87–97.

    CAS  Google Scholar 

  • Fishman, M.C. 1976. Membrane potential of juxtaglomerular cells. Nature, Lond. 260: 542–544.

    Article  CAS  Google Scholar 

  • Fray, J.C.S. 1980a. Stimulus-secretion coupling of renin. Role of hemodynamic and other factors. Circ. Res. 47: 485–492.

    PubMed  CAS  Google Scholar 

  • Fray, J.C.S. 1980b. Mechanism by which renin secretion from perfused rat kidneys is stimulated by isoprenaline and inhibited by high perfusion pressure. J. Physiol., Lond. 308: 1–13.

    PubMed  CAS  Google Scholar 

  • Fray, J.C.S. and Lush, D.J. 1984. Stretch receptor hypothesis for renin secretion: the role of calcium. J. Hypertension 2: 19–23.

    CAS  Google Scholar 

  • Fray, J.C.S, Park, C.S. and Valentine, A.N.D. 1987. Calcium and the control of renin secretion. Endocr. Rev. 8: 53–93.

    PubMed  CAS  Google Scholar 

  • Keeton, T.K. and Campbell, W.B. 1980. The pharmacologic alteration of renin release. Pharmacol. Rev. 31: 81–227.

    Article  Google Scholar 

  • Madey, M.A., Nakamura, Y., Nishimura, H., Cagen, L.M. and Barajas, L. 1984. Control of renin release in the aglomerular toadfish. Fed. Proc. 43: 1076.

    Google Scholar 

  • Nishimura, H. 1980. Comparative endocrinology of renin and angiotensin.In The Renin Angiotensin System. pp. 29–77. Edited by J.A. Johnson and R.R. Anderson. Plenum, New York.

    Google Scholar 

  • Nishimura, H. 1987. Role of the renin-angiotensin system in osmoregulation.In Vertebrate Endocrinology: Fundamentals and Biomedical Implications. Vol. 2, pp. 157–187. Edited by P.K.T. Pang and M. Schreibman. Academic Press, New York.

  • Nishimura, H., Crofton, J.T., Norton, V.M. and Share, L. 1977. Angiotensin generation in teleost fish determined by radioimmunoassay and bioassay. Gen. Comp. Endocrinol. 32: 236–247.

    Article  PubMed  CAS  Google Scholar 

  • Nishimura, H., Lunde, L.G. and Zucker, A. 1979. Renin response to hemorrhage and hypotension in the aglomerular toadfishOpsanus tau. Am. J. Physiol. 6: H105–H111.

    Google Scholar 

  • Twort, C.H.C. and van Breemen, C. 1988. Cyclic guanosine monophosphate-enhanced sequestration of Ca2+ by sarcoplasmic reticulum in vascular smooth muscle. Circ. Res. 62: 961–964.

    PubMed  CAS  Google Scholar 

  • Wilson, J.X. 1984. The renin-angiotensin system in nonmammalian vertebrates. Endocr. Rev. 5: 45–61.

    PubMed  CAS  Google Scholar 

  • Yamamoto, K., Okahara, T., Abe, Y., Ueda, J., Kishimoto, T. and Morimoto, S. 1973. Effects of cyclic AMP and dibutyryl cyclic AMP on renin releasein vivo andin vitro. Jap. Circ. J. 37: 1271–1276.

    PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Nishimura, H., Madey, M.A. Signals controlling renin release in aglomerular toadfish. Fish Physiol Biochem 7, 323–329 (1989). https://doi.org/10.1007/BF00004724

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004724

Keywords

Navigation