Skip to main content
Log in

Basic research and clinical aspects of the oscillatory potentials of the electroretinogram

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

This paper reviews current knowledge concerning the oscillatory potentials (OPs) of the electroretinogram (ERG). The first section describes the basic characteristics of the OPs primarily studied in healthy subjects. The behavior of the OPs is different from the a- and b-waves, indicating separate mechanisms for generation of the OPs compared with the major components of the ERG. The second section deals with the present view of the origin of the OPs collected from experimental studies of the vertebrate retina, including the primate. Findings favor the conclusion that the bipolar (or interplexiform) cells are the probable generators of the OPs. The third section gives clinical examples of the sensitivity of OPs to early disturbances of retinal function in different eye diseases.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Algvere P (1968) Clinical studies on the oscillatory potentials of the human electroretinogram with special reference to the scotopic b-wave. Acta Ophthahnol 46, 993–1023.

    Google Scholar 

  • Algvere P & Wachtmeister L (1972a) Oscillatory potentials of ERG in relation to the scotopic b-wave in operated cases of retinal detachment. In: Symposium on Electroretinography, ed: Wirth A. Proceedings of the VIII ISCERG Symposium, Pisa (Italy), Sept 7–12, 1970. Pisa: Pacini, 198–201.

    Google Scholar 

  • Algvere P & Wachtmeister L (1972b) On the oscillatory potentials of the human electroretinogram in light and dark adaptation II. Effect of adaptation background light and subsequent recovery in the dark: A Fourier analysis. Acta Ophthalmol (Kbh) 50, 837.

    Google Scholar 

  • Algvere P & Westbeck S (1972) Human ERG in response to double flashes of light during the course of dark adaptation: A Fourier analysis of the oscillatory potentials. Vision Res 12, 195–214.

    Google Scholar 

  • Algvere P, Wachtmeister L & Westbeck S (1972) On the oscillatory potential of the human electroretinogram in light and dark adaptation I. Thresholds and relation to stimulus intensity on adaptation to short flashes of light: A Fourier analysis. Acta Ophthalmol (Kbh) 50: 737.

    Google Scholar 

  • Bornschein H & Goodman G (1957) Studies of the a-wave in the human electroretinogram. Arch Ophthalmol 58, 431–437.

    Google Scholar 

  • Bresnick G, Korth K, Groo A & Palta M (1984) Electroretinographic oscillatory potentials predict progression of diabetic retinopathy: Preliminary report. Arch Ophthalmol 102, 1307–1311.

    Google Scholar 

  • Brindley GS (1956) Responses to illumination recorded by microelectrodes from the frog's retina. J Physiol (Lond.) 134, 360–384.

    Google Scholar 

  • Brown KT (1968) The electroretinogram: Its components and their origin. Vision Res 8, 633–677.

    Google Scholar 

  • Brunette JR & Desrochers R (1970) Oscillatory potentials: A clinical study in diabetics. Can J Ophthalmol 5, 373–380.

    Google Scholar 

  • Cobb WA & Morton HB (1953) A new component of the human electroretinogram. J Physiol 123, 36–37.

    Google Scholar 

  • Dawson WW, Maida TM & Rubin ML (1982) Human pattern-evoked retinal responses are altered by optic atrophy. Invest Ophthalmol Vis Sci 22, 796–803.

    Google Scholar 

  • Doty RW & Kimura DS (1963) Oscillatory potentials in the visual system of cats and monkeys. J Physiol 168, 205–218.

    Google Scholar 

  • Francois J & de Rouk A (1983) Retrolental fibroplasia and ERG. In: Slow Potentials and Microprocessor Applications, ed: Kolder HEJW. The Hague: Dr W Junk Publishers, 287–291.

    Google Scholar 

  • Galloway NR, Wells M & Barber C (1972) Changes in the oscillatory potential in relation to different features of diabetic retinopathy. Adv Exp Med Biol 24, 295–301.

    Google Scholar 

  • Gjötterberg M (1974) The electroretinogram in diabetic retinopathy. Acta Ophthalmol 52, 521–533.

    Google Scholar 

  • Granit R & Münsterhjelm A (1937) The electrical response of dark-adapted frog's eyes to monochromatic stimuli. J Physiol 88, 436–458.

    Google Scholar 

  • Heckenlively J (1982) ERG findings and optic atrophy in essential night blindness. Invest Ophthalmol Vis Sci ARVO Suppl 22, 138.

    Google Scholar 

  • Henkes HE & Houtsmüller AJ (1965) Fundus diabeticus. An evaluation of the preretinopathic stage. Am J Ophthalmol 60, 662–670.

    Google Scholar 

  • Heynen H & van Norren D (1985) Origin of the electroretinogram in the intact macaque eye II: Current source—density analysis. Vision Res 25, 709–715.

    Google Scholar 

  • Heynen H, Wachtmeister L & van Norren D (1985) Origin of the oscillatory potentials in the primate retina. Vision Res 25, 1365–1373.

    Google Scholar 

  • Jacobson JH, Suzuki T & Stephens G (1963) The electroretinogram obtained by computer techniques in color-deficient humans. Arch Ophthalmol 69, 424–435.

    Google Scholar 

  • King-Smith PE, Loffing DH & Jones R (1986) Rod and cone ERGs and their oscillatory potentials. Invest Ophthalmol Vis Sci 27, 270–273.

    Google Scholar 

  • Knave B (1969) The ERG and ophthalmological changes in experimental metallosis in the rabbit I. Effect of iron particles. Acta Ophthalmol 47, 1–23.

    Google Scholar 

  • Kojima M & Zrenner E (1978) Off components in responses to brief light flash in the oscillatory potential of the human electroretinogram. Albrecht von Graefes Arch Klin Exp Ophthalmol 206, 107–120.

    Google Scholar 

  • Korol S, Leuenberger PM, Englert U, Babel J (1975) In vivo effects of glycine on retinal ultrastructure and averaged electroretinogram. Brain Res 97, 235.

    Google Scholar 

  • La Chapelle P, Little J & Polomeno RC (1983) The photopic electroretinogram in congenital stationary night blindness with myopia. Invest Ophthalmol Vis Sci 24, 422–450.

    Google Scholar 

  • Miller RF & Dowling JE (1970) Intracellular responses of the Müller (glial) cells of mudpuppy retina. Their relation to the b-wave of the elecroretinogram. J Neurophysiol 33, 323–341.

    Google Scholar 

  • Nylander U (1967) Ocular damage in chloroquine therapy. Acta Ophthalmol Suppl 92.

  • Ogden TE (1973) The oscillatory waves of the primate electroretinogram. Vision Res 13, 1059–1074.

    Google Scholar 

  • Perdriel G, Soussen G, Desbordes P & Leblanc M (1964) Physiopathologië des ondés e de l'électrorétinogramme.

  • Ronchi LA & Grazi S (1956) The dependence of human electroretinogram on the shape of the stimulus as a function of time. Optica Acta 3, 188–195.

    Google Scholar 

  • Schmeisser ET & Dawson WW (1980) Slow wave relationships in the visual system of Necturus maculosus. Comp Biochemical Physiol 67, 605–610.

    Google Scholar 

  • Simonsen SE (1965) Electroretinographic study of diabetics: A preliminary report. Acta Ophthalmol 43, 841–843.

    Google Scholar 

  • Simonsen SE (1968) ERG in diabetics. In: Clinical Value of Electroretinography, ed: Francois J. XXth International Congress of Ophthalmology Symposium, Ghent, August 1–4, 1966, ISCERG sponsor. Basel: Karger, 403–412.

    Google Scholar 

  • Simonsen SE (1969) ERG in juvenile diabetics. A prognostic study. In: Symposium on the Treatment of Diabetic Retinopathy, eds. Golberg MF, Fine SL Washington DC: US Public Health Service (Publ No 1890). 681–689.

    Google Scholar 

  • Speros P & Price J (1981) Oscillatory potentials, history, techniques and potential use in the evaluation of disturbances of retinal circulation. Surv Ophthalmol 25, 237–252.

    Google Scholar 

  • Stangos N, Rey P, Meyer JJ, Thoreus B (1972) Averaged ERG responses in normal human subjects and ophthalmological patients. In: Symposium on Electroretinography, ed: Wirth A. Proceedings of the VIII ISCERG Symposium, Pisa (Italy) Sept 7–12 1970. Pisa: Pacini, 278–304.

    Google Scholar 

  • Steinberg RH (1966) Oscillatory activity in the optic tract of cat and light adaptation. J Neurophysiol 29, 139–156.

    Google Scholar 

  • Steinberg RH, Schmidt R & Brown KT (1970) Intracellular responses to light from cat pigment epithelium: Origin of the electroretinogram c-wave. Nature 227, 728–730.

    Google Scholar 

  • Stephens G, Cinotti A, White HJ & Veltri E (1978) Zinc: Its effect on the oscillatory potential, Doc Ophthalmol Proc Ser 15, 53–58.

    Google Scholar 

  • Stodtmeister R (1973) The spectral sensitivity functions of human ERG wavelets. Ophthalmic Res 5, 21–30.

    Google Scholar 

  • Tsuchida Y, Kawasaki K, Jacobson JH (1971) Rhythmic wavelets of the positive off-effect in the human electroretinogram. Am J Ophthalmol 72, 60–68.

    Google Scholar 

  • Usami E (1966). Studies on oscillatory potentials in the cases of occlusion the retinal artery and thrombosis of the retinal vein. Jpn J Ophthalmol Suppl. 10, 113–119.

    Google Scholar 

  • Wachtmeister L (1972) On the oscillatory potentials of the human electroretinogram in light and dark adaptation. Acta Ophthalmol Suppl 116.

  • Wachtmeister L (1973a) On the oscillatory potentials of the human ERG in light and dark adaptation III: Thresholds and relation to stimulus intensity on adaptation to background light. Acta Ophthalmol (Kbh) 51, 95.

    Google Scholar 

  • Wachtmeister L (1973b) On the oscillatory potentials of the human ERG in light and dark adaptation IV Effect of adaptation to short flashes of light. Time interval and intensity of conditioning flashes: A Fourier analysis. Acta Ophthalmol (Kbh) 51, 250.

    Google Scholar 

  • Wachtmeister L (1974a) Luminosity functions of the oscillatory potentials of the human electroretinogram. Acta Ophthalmol 52, 353.

    Google Scholar 

  • Wachtmeister L (1974b) Stimulus duration and the oscillatory potentials of the human electroretinogram. Acta Ophthalmol 52, 729.

    Google Scholar 

  • Wachtmeister L & Dowling JD (1978) The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 17, 1176–1188.

    Google Scholar 

  • Wachtmeister L (1980) Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG) I. GABA and glycine antagonists. Acta Ophthalmol 58, 712–725.

    Google Scholar 

  • Wachtmeister L (1981a) Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG) II. Glutamate-asparatate and dopamine antagonists. Acta Ophthalmol 59, 247–257.

    Google Scholar 

  • Wachtmeister L (1981b) Further studies of the chemical sensitivity of the oscillatory potentials of the electroretinogram (ERG) III. Some Ω-amino acids and ethanol. Acta Ophthalmol 59, 609–619.

    Google Scholar 

  • Wanger P & Persson HE (1985) Early diagnosis of retinal changes in diabetics. A comparison between electroretinography and retinal biomicroscopy. Acta Ophthalmol 63, 716–720.

    Google Scholar 

  • Yonemura D, Tsusuki K & Aoki T (1962) Clinical importance of the oscillatory potential in the human ERG. Acta Ophthalmol (Kbh) Suppl. 70, 115–122.

    Google Scholar 

  • Yonemura D & Kawasaki K (1978) Electrophysiological study on activities of neuronal and non-neuronal retinal elements in man with reference to its clinical application. Jpn J Ophthalmol 22, 1–19.

    Google Scholar 

  • Yonemura D & Hatta M (1966) Studies of the minor components of the frog's electroretinogram. Jpn J Physiol 16, 11–12.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wachtmeister, L. Basic research and clinical aspects of the oscillatory potentials of the electroretinogram. Doc Ophthalmol 66, 187–194 (1987). https://doi.org/10.1007/BF00145232

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00145232

Key words

Navigation