Skip to main content
Log in

Influence of a twofold voluntary hyperventilation on visually evoked cortical potentials and human pupillogram

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

We studied the direct and aftereffects of twofold hyperventilation (HV) on pattern reversing VEPs and pupillograms (PGs) of 19 healthy volunteers. The VEP-N80 and P100 latencies increased during HV. Both peak times were maintained for a longer period, up to 20 minutes after HV-2 ended. In addition, the PG-latency time during HV and the PG-construction time during and after HV were increased. The results indicated a temporary delay of neural afferent transmission in the visual system during and after HV. A similar delay of the nervous transmission appeared in the efferent part of the system regulating the pupillary movements after HV ended. The observed changes of the VEP and PG parameters most probably resulted from the hypocapnia cased by HV and its effect on the brain vessels, although other explanations for the changes of the VEP- and PG-parameters may have been possible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dodt E. Elektrophysiologische Topodiagnostik visueller Störungen. Ergebn exper Med 1982; 41: 299–306.

    Google Scholar 

  2. Ivanitzkij AM. Brain mechanisms for signal estimation. Moskow: Medicine, 1976 (Russ.).

    Google Scholar 

  3. Shagass C. Evoked brain potentials in psychiatry. Moskow: Mir, 1975.

    Google Scholar 

  4. Gavriysky V. Visually evoked potentials and physical loading. Questions of the Physical Culture 1976; 4: 223–8 (Bulg.).

    Google Scholar 

  5. Zenkov LR, Losev NI, Melnichuck VP, Radzevich TE. Changes of the VEP-amplitude by hyprventilation at healthy and epileptic humans. Human physiology 1976; 2: 208–14 (Russ.).

    Google Scholar 

  6. Drischel H. Untersuchungen über die Dynamik des Lichtreflexes der menschlichen Pupille. I und II Mitteilung Pflüg Arch 1957; 264: 145–190.

    Google Scholar 

  7. Drischel H. Neues über die Pupille. Sitzungsber. Sächs Akad der Wissensch Leipzig (Akad Verlag, Berlin) 1983; 116/5: 1–30.

  8. Löwenstein O., Loewenfeld I. The Pupil. In: Davson H, ed. The eye. New York-London: Academic Press, 1969: 255–337.

    Google Scholar 

  9. Albrecht H, Bruhn R, Lorenz D, Lücker PW, Schumacher M. Pupillometrie: Eine nicht-invasive pharmakokinetische und pharmakodynamische Untersuchungsmethode zur Wirkung von Trospiumchlorid (Spasmo-lyt®) an der glatten Muskulatur. Meth Find Exper Clin Pharmacol 1983; 5(8): 585–7.

    Google Scholar 

  10. Grünberger J, Linzmayer L, Cepko H, Saletu B. Pupillometrie im psychopharmakologischen Experiments. Arzneimittel-Forschung/Drug Res 1986; 36(1): 141–6.

    Google Scholar 

  11. Loewenfeld I. Supra-spinale Hemmung. Mechanismus und geschichtliche Entwicklung. In: Die normale und die gestörte Pupillenbewegungen, Symp der DOG, 1972. München: Bergmann Verlag, 1973: 115–45.

    Google Scholar 

  12. Appenzeller O. The normal pupil and some pupillary abnormalities. In: Appenzeller O. The Autonomic Nervous System. Amsterdam-Oxford-New York: North-Holland Publ. 1976: 223–6.

    Google Scholar 

  13. Ohtsuka K, Asakura K, Kawasaki H, Sawa M. Respiratory fluctuations of the human pupil. Exper Brain Res 1988; 71: 215–7.

    Google Scholar 

  14. Alexandridis E. Pupillographie. Heidelberg: Hüthig Verlag, 1971.

    Google Scholar 

  15. Alexandridis E, Krastel H, Reuter R. In wieweit sind die Pupillenlichtreflexe bei der korticalen Amaurose gestört? Fortschr Ophthal 1983; 80: 79–82.

    Google Scholar 

  16. Martin J. Notions de base en mathematiques et statistiques. Paris: Gauthier-Villars, 1967.

    Google Scholar 

  17. Sanders EAC, Volkers ACW, v.d. Poel JC, van Lith GHM. Visual functions and pattern VER in optic neuritis. Brit J Ophthal 1987; 71(8): 602–8.

    Google Scholar 

  18. Spekreijse H. Pattern evoked potentials: principles, methodology and phenomenology. Proc Intern Evok Poten, Symp Nottimgam, 1980: 55–74.

  19. Araki S, Murata K, Aono H. Central and peripheral nervous system dysfunction in workers exposed to lead, zinc and copper. Int Arch Occup Envir Health 1987; 59: 177–87.

    Google Scholar 

  20. Riemslag FCC, Spekreijse H, van Walbeek H. Pattern reversal and appearance-disappearance responses in MS patients. Doc Ophthalmol Proc Ser 1981; 27: 215–21.

    Google Scholar 

  21. Yamazaki H. Pattern VECP-waveforms and spatial frequency characteristics in children. Doc Ophthalmol 1988; 70: 59–65.

    Google Scholar 

  22. Davies HD, Carrol WM, Mastaglia FL. Effects of hyperventilation on pattern-reversal visual evoked potentials in patients with demyelination. J Neurol Neurosung Psychiat 1986; 49: 1392–6.

    Google Scholar 

  23. Cliff RA. Chronic hyperventilation and its treatment by physiotherapy: discussion paper. J Royal Soc Med 1984; 77: 855–62.

    Google Scholar 

  24. Kraaier V, van Huffeln AC, Wieneke GH. Changes in quantitative EEG a. Blood flow velocity due to standardized hyperventilation: a model of transient ischaemia in young human subjects. EEG Clin Neurophysiol 1988; 70: 377–87.

    Google Scholar 

  25. Witzleb E. Function of the vascular system. In: Schmidt RF, Thews G, ed. Human Physiology, Vol. 3. Berlin-Heidelberg-New York: Springer Verlag, 1983: 176–82.

    Google Scholar 

  26. Georgiev V, Kisselkova E, Mihailov V. Influence of hyperventilation and apnea on rheoencephalographic-parameters of brain circulation. Question of the Physical Culture 1988; 10: 22–8 (Bulg.).

    Google Scholar 

  27. Gavriysky V. VEPs during apnea and hyperventilation. IV Nat Congress Physiol Sci 1986, Summaries, 43 (Bulg.).

  28. Vein AM, Moldovanu IV. Hyperventilation and brain functions. In: Vein AM, Moldovanu IV. Neurogenic Hyperventilation. Kishinev: Stiynza, 1988: 96–108 (Russ.).

    Google Scholar 

  29. Kappers, JA. Die zentrale Regulierung der normalen Pupillenbewegung. In: Die normale und die gestörte Pupillenbewegungen, Symp der DOG, 1972. München, Bergmann Verlag, 1983: 2–9.

    Google Scholar 

  30. George DT, Nutt DJ, Walker WV, Porges SW, Adinoff B, Linnoila M. Lactate and hyperventilation substantially attenuate vagal tone in normal volunteers. Arch Gen Psychiatry 1989; 46: 153–6.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gavriysky, V.S. Influence of a twofold voluntary hyperventilation on visually evoked cortical potentials and human pupillogram. Doc Ophthalmol 77, 213–224 (1991). https://doi.org/10.1007/BF00161369

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00161369

Key words

Navigation