Skip to main content
Log in

A mathematical model for the force and energetics in competitive running

  • Published:
Journal of Mathematical Biology Aims and scope Submit manuscript

Abstract

A simple mathematical model for competitive running is developed. This model contains the force and energy reserves as key variables and it describes their relationship and dynamics. It is made up of three submodels for the biomechanics of running, the energetics and the optimization. The model for the energetics is an extension of the hydraulic model of Margaria and Morton. The key geometric parameters of this piecewise linear, three compartment model are determined on the basis of well known physiological facts and data.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ballreich, R.: Weg and Zeitmerkmale von Sprintbewegungen. Berlin: Bartels and Warnitz Vlg 1969

    Google Scholar 

  2. Baumann, W.: Kinematic and dynamic characteristics of the sprint start. Biomechanics VB. (Int. Ser. Biomech., vol. Vb, pp. 194–199) Baltimore: University Park Press 1973

    Google Scholar 

  3. Behncke, H.: Optimization models for the force and energy in competitive sports. Math. Meth. Appl. Sci. 9, 298–311 (1987)

    Google Scholar 

  4. Cavagna, G. A., Kaneko, M.: Mechanical efficiency in level walking and running. J. Phys. 268, 467–481 (1977)

    Google Scholar 

  5. Davies, C. T. M.: Wind resistance and assistance in running. Med. Sport 13, 199–212 (1981)

    Google Scholar 

  6. di Prampero, P. E., Pifiera Limas, F., Sassi, G.: Maximal muscular power, aerobic and anaerobic in 116 athletes performing at the 19th Olympic Games in Mexico. Ergonomics 13, 665–674 (1970)

    Google Scholar 

  7. Filipov, A. F.: On certain questions in optimal control. Siam J. Control 2, 76–84 (1962)

    Google Scholar 

  8. Fukunaga, T., Matsuo, A., Yuasa, K., Fujimatsu, H., Asahina, K.: Mechanical power output in running. Biomechanics VIb. (Int. Ser. Biomech., vol VIb) Baltimore: University Park Press 1978

    Google Scholar 

  9. Heck, H.: Laktat in der Leistungsdiagnostik. Schorndorf: Hoffmann 1990

    Google Scholar 

  10. Hirvonen, J., Rehunen, S., Rusko, H., Härkönen, M.: Breakdown of high energy phosphate compounds and lactate accumulation during short supramaximal exercise. Eur. J. Appl. Physiol. 56, 253–259 (1987)

    Google Scholar 

  11. Hellmann, W., Hettinger, T.: Sportmedizin - Arbeits- und Trainingsgrundlagen. Stuttgart New York: Schattauer 1980

    Google Scholar 

  12. Keller, J. B.: A theory of competitive running. Phys. Today 26, 43–47 (1973)

    Google Scholar 

  13. Kindermann, W., Keul, J.: Anaerobe Energiebereitstellung im Hochleistungssport. Schorndorf: Hoffmann 1977

    Google Scholar 

  14. Knuttgen, H. G., Vogel, J. A., Poortmans, J.: Biochemistry of Exercise. In: Proc. of the Fifth Intern. Symposium on the Biochemistry of Exercise, Boston 1982. Champaign, IL: Human Kinetics Publ. Inc. 1982

    Google Scholar 

  15. Mader, A.: Eine Theorie zur Berechnung der Dynamik und des steady state von Phosphorylierungszustand und Stoffwechselaktivität der Muskelzelle als Folge des Energiebedarfs. Habilitationsschrift -Deutsche Sporthochschule Köln (1984)

  16. Margaria, R.: Biomechanics and energetics of muscular exercises. Oxford: Clarendon Press 1976

    Google Scholar 

  17. McGilvery, R. W., Murray, T.: Calculated equilibria of phosphocreatine and adenosin phosphates during utilization of high energy phosphate by muscle. J. Biol. Chem. 18, 5845–5850 (1974)

    Google Scholar 

  18. Morton, R. H.: A three component model of human bioenergetics. J. Math. Biol. 24, 451–466 (1986)

    Google Scholar 

  19. Morton, R. H.: Modelling human power and endurance. J. Math. Biol. 28, 49–64 (1990)

    Google Scholar 

  20. Morton, R. H.: Model theory equations for maximal power and endurance. (Preprint 1988)

  21. Neustadt, L.: Optimization. Princeton: Princeton University Press 1976

    Google Scholar 

  22. Taylor, C. R., Schmidt Nielsen, K., Raab, J. L.: Scaling of energetic cost of running to body size in mammals. Am. J. Physiol. 219, 1104–1107 (1970)

    Google Scholar 

  23. Ward-Smith, A. J.: A mathematical theory of running, based on the first law of thermodynamics and its application to the performance of world class athletes. J. Biomech. 18, 337–349 (1985)

    Google Scholar 

  24. Zaciorski, V. M.: Biomechanische Grundlagen der Ausdauer. Berlin: Sportverlag 1987

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Behncke, H. A mathematical model for the force and energetics in competitive running. J. Math. Biol. 31, 853–878 (1993). https://doi.org/10.1007/BF00168050

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00168050

Key words

Navigation