Skip to main content
Log in

Ultra-high-speed MR imaging

  • Review Article
  • Magnetic Resonance Imaging
  • Published:
European Radiology Aims and scope Submit manuscript

Abstract

Conventional magnetic resonance imaging (MRI) has been shown to provide excellent morphological images of the body organs, particularly structures undergoing little physiologic motion. Nevertheless, the clinical usefulness of MRI has been hampered by long acquisition times, high cost of scanning because of limited patient throughput, and image artifacts due to patient motion. With recent technical developments, several ultrafast scanning techniques capable of acquiring images in a breath-hold now find their introduction into clinical use. The system improvements are potentially useful for a vast range of applications hitherto not accessible to MR imaging. Among these are functional brain imaging, realtime imaging of cardiac motion and perfusion, fast abdominal imaging, improved MR angiography, and potentially real-time monitoring of interventional procedures. Whereas some ultrafast techniques can be performed on conventional scanners, echo-planar imaging, the fastest currently available data acquisition strategy, requires specially designed hardware. This article provides on overview of the technical advances in the ultrafast MRI and discusses potential applications and the possible future impact on body scanning.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Mansfield P (1977) Multi-planar image formation using NMR spin echoes. J Phys C 10: L55-L58.

    Google Scholar 

  2. Aronen HJ, Cohen MS, Belliveau JW, Fordham JA, Rosen BR (1993) Ultrafast imaging of brain tumors. Top Magn Reson Imaging 5: 14–24.

    Google Scholar 

  3. McKinstry RC, Weiskoff RM, Belliveau JW, Vevea JM, Moore JB, Kwong KW, Halpern EF, Rosen BR (1992) Ultrafast MR imaging of water mobility: animal models of altered celebral perfusion. J Magn Reson Imaging 2: 377–384.

    Google Scholar 

  4. Rosen BR, Belliveau JW, Aronen HJ, Kennedy D, Buchbinder BR, Fischman A, Gruber M, Glas J, Weiskoff RM, Cohen MS, Hochberg FH, Brady TJ (1991) Susceptibility contrast imaging of celebral blood volume: human experience. Magn Reson Med 22: 293–299.

    Google Scholar 

  5. Davis CP, McKinnon GC, Debatin JF, Wetter D, Eichenberger AC, Duewell S, Schulthess GK von (1994) Normal heart: evaluation with echo-planar MR imaging. Radiology 191: 691–696.

    Google Scholar 

  6. Wendland MF, Saeed M, Masui T, Derugin N, Moseley ME, Higgins CB (1993) Echo-planar MR imaging of normal and ischemic myorcardium with gadodiamide injection. Radiology 186: 535–542.

    Google Scholar 

  7. Butts K, Riederer SJ, Ehman RL, Felmlee JP, Grimm RC (1993) Echo-planar imaging of the liver with a standard MR imaging system. Radiology 189: 259–264.

    Google Scholar 

  8. Muller MF, Prasad PV, Bimmler D, Kaiser A, Edelman RR (1994) Functional imaging of the kidney by means of measurement of the apparent diffusion coefficient. Radiology 193: 711–715.

    Google Scholar 

  9. Davis CP, Huch Böni R, Hauser M, Krestin GP (1995) Functional MRI of the kidney using dynamic contrast-enhanced echo planar imaging. In: Proceedings of the Society of Magnetic Resonance and the European Society for Magnetic Resonance in Medicine and Biology 2: 890.

    Google Scholar 

  10. Leung DA, Debatin JF, Wildermuth S, McKinnon GC, Holtz D, Dumoulin CL, Darrow RD, Hofmann E, Schulthless GK von (1995) Intravascular MR tracking catherer: preliminary experimental evaluation. Am J Roentgenol 164: 1265–1270.

    Google Scholar 

  11. McKinnon GC (1993) Ultrafast interleaved gradient-echo-planar imaging on a standard scanner. Magn Reson Med 30: 609–616.

    Google Scholar 

  12. Butts K, Reiderer SJ, Ehman RL, Thompson RM, Jack CR (1994) Interleaved echo planar imaging on a standard MRI system. Magn Reson Med 31: 67–72.

    Google Scholar 

  13. Rzedzian RR, Pykett IL (1987) Instant images of the human heart using a new, whole-body MR imaging system. Am J Roentgenol 149: 245–250.

    Google Scholar 

  14. Meyer CH, Hu BS, Nishimura DG, Macovski A (1992) Fast spiral coronary artery imaging. Magn Reson Med 28: 202–213.

    Google Scholar 

  15. Schulthess GK von, Higashino SM, Higgins SS, Didier D, Fisher MR, Higgins CB (1986) Coarctation of the aorta: MR imaging. Radiology 158: 469–474.

    Google Scholar 

  16. Amparro EG, Higgins CB, Farmer D, Gamsu G McNamara M (1984) Gated MRI pf cardiac and paracardiac masses: initial experience. Am J Roentgenol 143: 1151–1156.

    Google Scholar 

  17. Sechtem U, Pflugfelder P, Higgins CB (1987) Quantification of cardiac function by conventonal and cine magnetic resonance imaging. Cardiovasc Intervent Radiol 10: 365–373.

    Google Scholar 

  18. Rzedzian R, Chapman B, Mansfield P, Coupland RE, Doyle M, Chrispin A, Guilfoyle D, Small P (1983) Real-time nuclear magnetic resonance clinical imaging in paediatrics. Lancet 2: 1281–1282.

    Google Scholar 

  19. Davis CP, McKinnon GC, Debatin JF, Duewell S, Schulthess GK von (1995) Single-shot versus interleaved echo-planar MR-imaging: application to visualization of cardiac valve leaflets. J Magn Reson Imaging 5: 107–112.

    Google Scholar 

  20. Paulin S, Schulthess GK von, Fossel E, Krayenbuehl HP (1987) MR imaging of the aortic root and proximal coronary arteries. Am J Roentgenol 148: 665–670.

    Google Scholar 

  21. Alfidi RJ, Masaryk TJ, Haacke EM, Lenz GW, Ross JS, Modic MT, Nelson AD, LiPuma JP, Cohen AM (1987) MR angiography of peripheral, carotid, and arteries. Am J Roentgenol 149: 1097–1099.

    Google Scholar 

  22. Edelman RR, Manning WJ, Burstein D, Paulin S (1991) Coronary arteries: breath-hold MR angiography. Radiology 181: 641–643.

    Google Scholar 

  23. Manning WJ, Li W, Edelman RR (1993) A preliminary report comparing magnetic resonance coronaryh angiography with conventional angiography. N Engl J Med 328: 828–832.

    Google Scholar 

  24. Wetter DR, McKinnon GC, Debatin JF, Schultless GK von (1995) Cardiac echo-planar MR imaging: comparison of single-and multiple-shot techniques. Radiology 194: 765–770.

    Google Scholar 

  25. Fisher MR, Schultless GK von, Higgins CB (1985) Multiphasic cardiac magnetic resonance imaging: normal regional left ventricular wall thickening. Am J Roentgenol 145: 27–30.

    Google Scholar 

  26. Zerhouni EA, Parish DM, Rogers WJ, Yang A, Shapiro EP (1988) Human heart: tagging with MR imaging — a method for noninvasive assessment of myocardial motion. Radiology 169: 59–63.

    Google Scholar 

  27. Axel L, Goncalves RC, Bloomgarden D (1992) Regional heart wall motion: two-dimensional analysis and functional imaging with MR imaging. Radiology 183: 745–750.

    Google Scholar 

  28. Buchalter MB, Weiss JL, Rogers WJ, Zerhouni EA, Weisfeldt ML, Beyar R, Shapiro EP (1990) Noninvasive quantification of left ventricular rotational deformation in normal humans using magnetic resonance imaging myocardial tagging. Circulation 81: 1236–1244.

    Google Scholar 

  29. Tang C, McVeigh ER, Zerhouni EA (1995) Multi-shot EPI for improvement of myocardial tag contrast: comparison with segmented SPGR. Magn Reson Med 33: 443–447.

    Google Scholar 

  30. Karwatowski SP, Mohiaddin RH, Yang GZ, Firmin DN, St JSM, Underwood SR (1994) Regional myocardial velocity imaged by magnetic resonance in patients with ischaemic heart disease. Br Heart J 72: 332–338.

    Google Scholar 

  31. Felipe RF, Prpic H, Arndt JW, Wall EE van der, Pauwels EK. (1991) Role of radionuclide ventriculography in evaluating cardiac function. Eur J Radiol 12: 20–29.

    Google Scholar 

  32. Siu SC, Rivera JM, Guerrero JL, Handschumacher MD, Lethor JP, Weyman AE, Levine RA, Picard MH (1993) Three-dimensional echocardiography. In vivo validation for left ventricular volume and function. Circulation 88: 1715–1723.

    CAS  PubMed  Google Scholar 

  33. Sapin PM, Schroder KM, Gopal AS, Smith MD, DeMaria AN, King DL (1994) Comparison of two- and three-dimensional echocardiography with cineventriculography for measurement of left ventricular volume in patients. J Am Coll Cardiol 24: 1054–1063.

    CAS  PubMed  Google Scholar 

  34. Rumberger JA, Reed JE (1992) Quantitative dynamics of left ventricular emptying and filling as a function mof heart size and stroke volume in pure aortic regurgitation and in normal subjects. Am J Cardiol 70: 1045–1050.

    Google Scholar 

  35. Nootens M, Wolfkiel CJ, Chomka EV, Rich S (1995) Understanding right and left ventricular systolic function and interactions at rest and with exercise in primary pulmonary hypertension. Am J Cardiol 75: 374–377.

    Google Scholar 

  36. Mancini GB, Higgins CB (1985) Digital subtraction angiography: a review of cardiac applications. Prog Cardiovasc Dis 28: 111–141.

    Google Scholar 

  37. Utz JA, Herfkens RJ, Heinsimer JA, Bashore T, Califf R, Glover G, Pelc N, Shimakawa A (1987) Cine MR determination of left ventricular ejection fraction. Am J Roentgenol 148: 839–843.

    Google Scholar 

  38. Debatin JF, Nadel SN, Paolini JF, Sostman HD, Coleman RE, Evans AJ, Beam C, Spritzer CE, Bashore TM (1992) Cardiac ejection fraction: phantom study comparing cine MR imaging, radionuclide blood pool imaging, and ventriculography. J Magn Reson Imaging 2: 135–142.

    Google Scholar 

  39. Unterweger M, Debatin JF, Leung DA, Wildermuth S, McKinnon GC, Schultless GK von (1994) Comparison of echoplanar and conventional Cine-magnetic resonance data-acquisition strategies. Invest Radiol 29: 100–994.

    Google Scholar 

  40. Krauss XH, Van der Wall EE, Doornbos J, Blokland JA, Postema S, Roos A de, Van der Laarse A, Cats VM, Van Voorthuisen AE, Bruschke AV (1989) Value of magnetic resonance imaging in patients with a recent myocardial infarction: comparison with planar thallium-201 scintigraphy. Cardiovasc Intervent Radiol 12: 119–124.

    Google Scholar 

  41. Atkinson DJ, Burstein D, Edelman RR (1990) First-pass cardiac perfusion: evaluation with ultrafast MR imaging. Radiology 174: 757–762.

    Google Scholar 

  42. Rugge FP van, Boreel JJ, Wall EE van der, Dijkman PR van, Laarse A van der, Doornbos J, Roos A de, Boer JA den, Bruschke AV, Voorthuisen AE van (1991) CArdiac first-pass and myocardial perfusion in normal subjects assessed by sub-second Gd-DTPA enhanced MR imaging. J Comput Assist Tomogr 15: 959–965.

    Google Scholar 

  43. Schaefer S, van TR, Saloner D (1992) Evaluation of myocardial perfusion abnormalities with gadolinium-enhanced snapshot MR imaging in humans. Work in progress. Radiology 185: 795–801.

    Google Scholar 

  44. Wilke N, Simm C, Zhang J, Ellermann J, Ya X, Merkle H, Path G, Ludemann H, Bache RJ, Ugurbil, K (1993) Contrastenhanced first pass myocardial perfusion imaging: correlation between myocardial blood flow in dogs at rest and during hyperemia. Magn Reson Med 29: 485–497.

    Google Scholar 

  45. Eichenberger AC, Schuiki E, Kochli VD, Amann FW, McKinnon GC, Schultless GK von (1994) Ischemic heart disease: assessment with gadolinium-enhanced ultrafast MR imaging and dipyridamole stress. J Magn Reson Imaging 4: 425–431.

    Google Scholar 

  46. Geschwind JF, Wendland MF, Saeed M, Lauerma K, Derugin N, Higgins CB (1994) Identification of myocardial cell death in reperfused myocardial injury using a dual mechanism of contrast-enhanced magnetic resonance imaging. Acad Radiol 1: 319–325.

    Google Scholar 

  47. Saeed M, Wendland MF, Higgins CB (1994) Contrast media for MR imaging of the heart. J Magn Reson Imaging 4: 269–279.

    Google Scholar 

  48. Saeed M, Wendland MF, Masui T, Higgins CB (1994) Reperfused myocardial infarctions on T1- and susceptibility-enhanced MRI: evidence for loss of compartmentalization of contrast media. Magn Reson Med 31: 31–39.

    Google Scholar 

  49. Yu KK, Saeed M, Wendland MF, Derugin N, Cavagna FM, Higgins CB (1992) Real-time dynamics of an extravascular magnetic resonance contrast medium in acutely infarcted myocardium using inversion recovery and gradient-recalled echo-planar imaging. Invest Radiol 27: 927–934.

    Google Scholar 

  50. Edelman RR, Li W (1994) Contrast-enhanced echo-planar MR imaging of myocardial perfusion: preliminary study in humans. Radiology 190: 771–777.

    Google Scholar 

  51. Wendland MF, Saeed M, Yu KK, Roberts TP, Lauerma K, Derugin N, Varadarajan J, Watson AD, Higgins CB (1994) Inversion recovery EPI of bolus transit in rat myocardium using intravascular and extravascular gadolinium-based MR contrast media: dose effects on peak signal enhancement. Magn Reson Med 32: 319–329.

    Google Scholar 

  52. Schwitter J, Leung DA, Debatin JF, Schultless GK von, McKinnon GC (1995) Evaluation of myocardial perfusion: T1-weighted multislice multiphase spin-echo EPI. Eur Radiol (Suppl) 5: S37 (185).

    Google Scholar 

  53. Edelman RR, Gaa J, Wedeen VJ, Loh E, Hare JM, Prasad P, Li W (1994) In vivo measurement of water diffusion in the human heart. Magn Reson Med 32: 423–428.

    Google Scholar 

  54. Debatin JF, Davis CP, Felblinger J, McKinnon GC (1995) Evaluation of ultrafast phase-contrast imaging in the thoracic aorta. MAGMA 3: 59–66.

    Google Scholar 

  55. Eichenberger AC, Schwitter J, McKinnon GC, Debatin JF, Schultness GK von (1995) Phase-contrast echo planar MRI: real-time quantification of flow and velocity patterns in the thoracic vessels induced by Valsava's maneuver. J Magn Reson Imaging (in press).

  56. Debatin JF, Ting RH, Wegmuller H, Sommer FG, Fredrickson JO, Brosnan TJ, Brosnan TJ, Bowman BS, Myers BD, Herfkens RJ, Pelc NJ (1994) Renal artery blood flow: quatitation with phase-contrast MR imaging with and without breath holding. Radiology 190: 371–378.

    Google Scholar 

  57. Edelman RR, Manning WJ, Gervino E, Li W (1993) Flow velocity quantification in human coronary arteries with fastg, breath-hold MR angiography. J Magn Reson Imaging 3: 699–703.

    Google Scholar 

  58. Keegan J, Firmin D, Gatehouse P, Longmore D (1994) The application of breath hold phase velocity mapping techniques to the measurement of coronary artery blood flow velocity: phantom data and initial in vivo results. Magn Reson Med 31: 526–536.

    Google Scholar 

  59. Sakuma H, Globits S, shimakawa A, Bernstein MA, Higgins CB (1994) Breath-hold coronary flow measurement with a cine phase-contrast technique. In: Proceedings of the Society of Magnetic Resonance 1: 375.

    Google Scholar 

  60. Grist TM, Polzin JA, Bianco JA, Korosec FR, Foo TK, Bernstein MA, Wdding KL, Frayne R, Mazaheri Y, Mistretta CA (1995) Measurement of absolute coronary flow and flow reserve using phase-contrast MRI techniques. In: Proceedings of the Society of Magnetic Resonance and the European Society for Magnetic Resonance in Medicine and Biology 1: 19.

    Google Scholar 

  61. Davis CP, Hauser M, Gåhde SC, Leung DA, Sakuma H, Schultless GK von, Debatin JF (1995) Measurement of coronary flow with segmented k-space phase contrast MRI pre- and post dipyridamole. In: Proceedings of the Society of Magnetic Resonance and the European Society for Magnetic Resonance in Medicine adn Biology 1: 319.

    Google Scholar 

  62. Clarke GD, Eckels R, Chaney C, Smith D, Dittrich J, Hundley WG, NessAiver M, Li HF, Parkey RW, Peshock RM (1995) Measurement of absolute epicardial coronary artery flow and flow reserve with breath-hold cine phase-contrast magnetic resonance imaging. Circulation 91: 2627–2634.

    Google Scholar 

  63. Poncelet BP, Weisskoff RM, Wedeen VJ, Brady TJ, Kantor H (1993) Time-of-light quantification of coronary flow with echo-planar MRI. Magn Reson Med 30: 447–457.

    Google Scholar 

  64. Wildermuth S, Debatin JF, Huisman TAGM, Leung DA, McKinnon GC (1995) 3D phase contrast EPI MR-angiography of the carotid arteries. J Comp Assist Tomogr (in press).

  65. Leung DA, Debatin JF, Holtz D, Wildermuth S, Schöpke WD, McKinnon GC, Fuchs WA (1995) 3D-PC echoplanar MR-angiography of the trifurcation vessels in the lower extremities. Eur Radiol (Suppl) 5: S25 (118).

    Google Scholar 

  66. Edelman RR, Siewert B, Adamis M, Gaa J, Laub G, Wielpolski P (1994)Signal targeting with alternating radiofrequency (STAR) sequences: application to MR angiography. Magn Reson Med 31: 233–238.

    Google Scholar 

  67. Prince MR, Bass JC, Gabriel H, Londy FJ, Chenevert TL (1995) Breath-held 3D gadolinium-enhanced renal artery MRA. In: Proceedings of the Society of Magnetic Resonance and the European Society for Magnetic Resonance in Medicine and Biology 1: 539.

    Google Scholar 

  68. Holland GA, Dougherty L, Geenman BL, Baum RA, Carpenter JP, Schnall MD, Gilfeather M, Axel L (1995) Ultrafast 3D time-of-flight MR angiography with gadolinium of the abdominal aorta and the visceral vessels performed in a breath-hold: preliminary experience. In: Proceedings of the Society for Magnetic Resonance and theEuropean Society for Magnetic Resonance in Medicine and Biology 1: 77.

    Google Scholar 

  69. duewell S, Davis CP, McKinnon G, Marincek B, Schultless GK von (1993) 3- and 4-dimensional MR-angiography with interleaved gradient echo-echo planar sequences. In: Proceedings of the Society of Magnetic Resonance in Medicine 1: 385.

    Google Scholar 

  70. Rubin GD, Herfkens RJ, Pelc NJ, Foo TK, Napel S, Shimakawa A, Steiner RM, Bergin CJ (1994) Single breath-hold pulmonary magnetic resonanceangiography. Optimization and comparison of three imaging strategies. Invest Radiol 29: 766–792.

    Google Scholar 

  71. Edelman RR, Hahn PF, Buxton R, Wittenberg J, Ferrucci JT, Saini S, Brady TJ (1986) Rapid MR imaging with suspended respiratio: clinical application in the liver. Radiology 161: 125–131.

    Google Scholar 

  72. Winkler ML, Thoeni RF, Luh N, Kaufman L, Margulis AR (1989) Hepatic neoplasia: breath-hold MR imaging. Radiology 170; 801–806.

    Google Scholar 

  73. Mirowitz SA, Lee JK, Gutierrez E, Brown JJ, Heiken JP, Eilenberg SS (1991) Dynamic gadolinium-enhanced rapid-acquisition spin-echo MR imaging of the liver. Radiology 179: 371–376.

    Google Scholar 

  74. Runge VM, Pels Rijcken TH, Davidoff A, Wells JW, Stark DD (1994) Conttrast-enhanced MR imaging of the liver. J Magn Reson Imaging 4: 281–289.

    Google Scholar 

  75. Semelka RC, Shoenut JP, Ascher SM, Kroeker MA, Greenberg HM, Yaffe CS, Micflikier AB (1994) Solitary hepatic metastasis: comparison of dynamic contrast-enhanced CT and MR imaging with fat-supressed T2-weighted, breath-hold T1-weighted FLASH, and dynamic gadolinium-enhanced FLASH sequences. J magn Reson Imaging 4: 319–323.

    Google Scholar 

  76. Whitney WS, Herfkens RJ, Jeffrey RB, McDonnell CH, Li KC, Van Dalsem WJ, Low RN, Francis IR, Dabatin JF, Glazer GM (1993) Dynamic breath-hold multiplanar spoiled gradient-recalled MR imaging with gadolinium enhancement for differentiating hepatic hemangiomas from malignancies at 1.5 T. Radiology 189: 863–870.

    Google Scholar 

  77. Muller MF, Prasad P, Siewert B, Nissenbaum MA, Raptopoulos V, Edelman RR (1994) Abdominal diffusion mapping with use of a whole-body echo-planar system. Radiology 190: 475–478.

    Google Scholar 

  78. Le Bihan D (1991) Molecular diffusion nuclear magnetic resonance imaging. Magn Reson Q 7: 1–30.

    Google Scholar 

  79. Le Bihan D, Turner R, Douek P, Patronas N (1992) Diffusion MR imaging: clinical applications. Am J Roentgenol 159: 591–599.

    Google Scholar 

  80. Kucharczyk J, Mintorovitch J, Asgari HS, Moseley M (1991) Diffusion/perfusion MR imaging of acute cerebral ischemia. Magn Reson Med 19: 311–315.

    Google Scholar 

  81. Mintovorich J, Moseley ME, Chileuitt L, Shimizu H, Cohen Y, Weinstein PR (1991) Comparison of diffusion- and T2-weighted MRI for the early detection of cerebral ischemia and reperfusion in rats. Magh Reson Med 18: 39–50.

    Google Scholar 

  82. Le Bihan D, Delannoy J, Levin RL (1989) Temperature mapping with MR imaging of molecular diffusion: application to hypertemia. Radiology 171: 853–857.

    Google Scholar 

  83. Bleier AR, Jolesz FA, Cohen MS, Weisskoff RM, Dalcanton JJ, Higuchi N, Feinberg DA, Rosen BR, McKinstry RC, Hushek SG (1991) Real-time magnentic resonance imaging of laser heat deposition in tissue. Magn Reson Med 21: 132–137.

    Google Scholar 

  84. Aronen HJ, Gazit IE, Louis DN, Buchbinder BR, Pardo FS, Weisskoff RM, Harsh GR, Cosgrove GR, Halpern EF, Hochberg FH et al. (1994) Cerebral blood volume maps of gliomas: comparison with tumor grade and histologic findings. Radiology 191: 41–51.

    CAS  PubMed  Google Scholar 

  85. Warach S, Levin JM, Schomer DL, Holman BL, Edelman RR (1994) Hyperperfusion of ictal seizure focus demonstrated by MR perfusion imaging. Am J Neuroradiol 15: 965–968.

    Google Scholar 

  86. Ogawa S, Lee TM, Nayak AS, Glynn P (1990) Oxygenation-sensitive contrast in magnetic resonance image of rodent brain at high magnetic fields. Magn Reson Med 14: 68–78.

    Google Scholar 

  87. Duyn JH, Moonen CT, Yperen GH van, Boer RW de, Luyten PR (1994) Inflow versus deoxyhemoglobin effects in BOLD functional MRI using gradient echoes at 1.5-T. NMR Biomed 7: 83–88.

    Google Scholar 

  88. Bandettini PA, Wong EC, Jesmanowicz A, Hinks RS, Hyde JS (1994) Spin-echo and gradient-echo EPI of human brain activation using BOLD contrast: a comparative study at 1.5 T. NMR Biomed 7: 12–20.

    Google Scholar 

  89. Edelman RR, Siewert B, Darby DG, Thangaraj V, Nobre AC, Mesulam MM, Warach S (1994) Qualitative mapping of cerebral blood flow and functional localization with echo-planar MR imaging and signal targeting with alternating radio frequency. Radiology 192: 513–520.

    Google Scholar 

  90. Gaa J, Warach S, Wen P, Thangaraj V, Wieloposki PA, Edelman RR (1994) EPISTAR perfusion echo-planar imaging of human brain tumors. In: Works in progress supplement to annual meeting program. Society of Magnetic Resonance Imaging: S8.

  91. Wildermuth S, Debatin JF, Leung DA, Hofman E, Dumoulin CL, Darrow RD, Schöpke WD, Uhlschmid G, McKinnon GC, Schulthess GK von (1995) MR-guided percutaneous intravascular interventions: in vivo assessement of potential applications. In: Proceedings of the Society of Magnetic Resonance and the European Society for Magnetic Resonance in Medicine and Biology 2: 1161.

    Google Scholar 

  92. Ackerman JL, Offut MC, Buxton RB, Brady TJ (1986) Rapid 3D tracking of small RF coils. In: Proceedings of the Society of Magnetic Resonance in Medicine 1: 1131.

    Google Scholar 

  93. Dumoulin CL, Souza SP, Darrow RD (1993) Real-time position monitoring of invasive devices using magnetic resonance. Magn Reson Med 29: 411–415.

    Google Scholar 

  94. Schulthess GK von, Davis CP (1995) Fast and ultrafast MR-imaging of the heart. Radiologe (in press).

Download references

Author information

Authors and Affiliations

Authors

Additional information

Correspondence to: G. K. von Schulthess

Rights and permissions

Reprints and permissions

About this article

Cite this article

Davis, C.P., Mckinnon, G.C., Debatin, J.F. et al. Ultra-high-speed MR imaging. Eur. Radiol. 6, 297–311 (1996). https://doi.org/10.1007/BF00180599

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00180599

Key words

Navigation