Skip to main content
Log in

Mapping of a gene for epidermolytic palmoplantar keratoderma to the region of the acidic keratin gene cluster at 17q12–q21

  • Original Investigations
  • Published:
Human Genetics Aims and scope Submit manuscript

Summary

Epidermolytic palmoplantar keratoderma (EPPK) (Vörner-Unna-Thost) is an autosomal dominantly inherited skin disease of unknown etiology characterized by diffuse severe hyperkeratosis of the palms and soles and, histologically, by cellular degeneration. We have mapped a gene for EPPK to chromosome 17q11–q23, with linkage analysis using microsatellite DNA-polymorphisms, in a single large family of 7 generations. A maximum lod score of z=6.66 was obtained with the probe D17S579 at a recombination fraction of θ=0.00. This locus maps to the same region as the type I (acidic) keratin gene cluster. Keratins, members of the intermediate filament family, the major proteins of the cytoskeleton in epidermis, are differentially expressed in a tissue-specific manner. One acidic keratin, keratin 9 (KRT9), is expressed only in the terminally differentiated epidermis of palms and soles. The KRT9 gene has not yet been cloned; however, since the genes for most acidic keratins are clustered, it is highly probable that it too will map to this region. We therefore propose KRT9 as the candidate gene for EPPK.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Blanchet-Bardon C, Nazzaro V, Chevrant-Breton J, Espie M, Kerbrat P, Le-Marec B (1987) Hereditary epidermolytic palmoplantar keratoderma associated with breast and ovarian cancer in a large kindred. Br J Dermatol 117:363–370

    Google Scholar 

  • Bonifas JM, Rothman AL, Epstein EH (1991) Epidermolysis bullosa simplex: evidence in two families for keratin gene abnormalities. Science 254:1202–1205

    Google Scholar 

  • Cooper DN, Smith BA, Cooke HJ, Niemann S, Schmidtke J (1985) An estimate of unique DNA sequence heterozygosity in the human genome. Hum Genet 69:201–205

    Google Scholar 

  • Coulombe PA, Hutton ME, Letai A, Hebert A, Paller AS, Fuchs E (1991) Point mutations in human keratin 14 genes of epidermolysis bullosa simplex patients: genetic and functional analyses. Cell 66:1301–1311

    Google Scholar 

  • DerKaloustian VM, Kurban AK (1979) Genetic diseases of the skin. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Fuchs E, Green H (1980) Changes in keratin gene expression during terminal differentiation of the keratinocyte. Cell 19:1033–1042

    Article  CAS  PubMed  Google Scholar 

  • Hall JM, Lee MK, Newman B, Morrow JE, Anderson LA, Huey B, King MC (1990) Linkage of early-onset familial breast cancer to chromosome 17q21. Science 250:1684–1689

    Google Scholar 

  • Hall JM, Friedman L, Guenther C, Lee MK, Weber JL, Black DM, King MC (1992) Closing in on a breast cancer gene on chromosome 17q. Am J Hum Genet 50:1235–1242

    Google Scholar 

  • Hamada H, Petrino MG, Kakunaga T (1982) A novel repeated element with Z-DNA forming potential is widely found in evolutionary diverse eukaryotic genomes. Proc Natl Acad Sci USA 79:6465–6469

    CAS  PubMed  Google Scholar 

  • Hentati A, Lamy C, Melki J, Zuber M, Munnich A, Reconde J de (1992) Clinical and genetic hererogeneity of Charcot-Marie-Tooth disease. Genomics 12:155–157

    Google Scholar 

  • Knapp AC, Franke WW, Heid H, Hatzfeld M, Jorcano JL, Moll R (1986) Cytokeratin no. 9, an epidermal type I keratin characteristic of a special program of keratinocyte differentiation displaying body site specificy. J Cell Biol 103:657–667

    Google Scholar 

  • Küster W, Becker A (1992) Indication for the identity of palmoplantar keratoderma type Unna-Thost with type Vörner. Thost's family revisited 110 years later. Acta Dermatol Venereol (Stockh) (in press)

  • Lessin SR, Huebner K, Isobe M, Croce C, Steinert PM (1988) Chromosomal mapping of human keratin genes: evidence for nonlinkage. J Invest Dermatol 91:572–578

    Google Scholar 

  • Litt M, Luty JA (1989) A hypervariable microsatellite revealed by in-vitro amplification of a dinucleotide repeat within the cardiac muscle actin gene. Am J Hum Genet 434:387–401

    Google Scholar 

  • McKusick A (1990) Mendelian inheritance in man. 9th (edn). Johns Hopkins University Press, Baltimore

    Google Scholar 

  • Moll R, Franke WW, Schiller DL, Geiger B, Krepler R (1982) The catalog of human cytokeratins: pattern of expression in normal epithelia, tumors and cultured cells. Cell 31:11–24

    Article  CAS  PubMed  Google Scholar 

  • Moll I, Heid H, Franke WW, Moll R (1987) Distribution of a special subset of keratinocytes characterized by the expression of cytokeratin 9 in adult and fetal human epidermis of various body sites. Differentiation 33:254–265

    Google Scholar 

  • Nelson WG, Sun TT (1983) The 50- and 58-kilodalton keratin classes as molecular markers for stratified squamous epithelia: cell culture studies. J Cell Biol 97:244–251

    Google Scholar 

  • Nordheim A, Rich A (1983) The sequence (dC-dA)n · (dG-dT)n forms left-handed Z-DNA in negatively supercoiled plasmids. Proc Natl Acad Sci USA 80:1821–1825

    Google Scholar 

  • Ott J (1976) A computer program for linkage analysis in human pedigrees. Am J Hum Genet 28:528–529

    Google Scholar 

  • Polymeropoulos MH, Rath DS, Xiao H, Merril CR (1990) A simple sequence repeat polymorphism at the human growth hormone locus. Nucleic Acids Res 19:689

    Google Scholar 

  • Rabbiosi G, Borroni B, Pinelli P, Cosi V (1980) Palmoplantar keratoderma and Charcot-Marie-Tooth disease. Arch Dermatol 116:789–790

    Google Scholar 

  • Reis A (1991) PCR in linkage analysis of genetic diseases. In: Rolfs A, Schumacher H, Marx P (eds) PCR topics. Usage of polymerase chain reaction in genetic and infectious diseases. Springer, Berlin Heidelberg New York

    Google Scholar 

  • Romano V, Bosco P, Costa G, Leube R, Franke WW, Rocchi RM, Romeo G (1988) Chromosomal assignment of cytokeratin genes. Cytogenet Cell Genet 46:683

    Google Scholar 

  • Rosenberg M, RayChaudhury A, Shows TB, Le Beau MM, Fuchs E (1988) A group of type 1 keratin genes on human chromosome 17: characterization and expression. Mol Cell Biol 8:722–736

    Google Scholar 

  • Rosenberg M, Fuchs E, Le Beau MM, Eddy RL, Shows TB (1991) Three epidermal and one simple epithelial type II keratin genes map to human chromosome 12. Cytogenet Cell Genet 57:33–38

    Google Scholar 

  • Saiki RK, Gelfand DH, Stoffel S, Scharf SJ, Higuchi R, Horn GT, Mullis KB, Ehrlich HA (1988) Primer-directed enzymatic amplification of DNA with a thermostable DNA polymerase. Science 239:487–491

    CAS  PubMed  Google Scholar 

  • Stoler A, Kopan R, Duvic M, Fuchs E (1988) Use of monospecific antisera and cRNA probes to localize the major changes in keratin expression during normal and abnormal epidermal differentiation. J Cell Biol 107:427–446

    Google Scholar 

  • Tautz D (1989) Hypervariability of simple sequences as a general source for polymorphic DNA markers. Nucleic Acids Res 17:6463–6471

    CAS  PubMed  Google Scholar 

  • Tautz D, Renz M (1984) Simple sequences are ubiquitously repetitive components of eukarvotic genomes. Nucleic Acids Res 12:4127–4138

    Google Scholar 

  • Thost A (1880) Ueber erbliche Ichthyosis palmaris et plantaris cornea. Diss. Heidelberg

  • Unna PG (1883) Ueber das Keratoma palmare et plantarc hereditarium. Arch Dermatol Syph (Berlin) 15:231–270

    Google Scholar 

  • Vörner H (1901) Zur Kenntnis des Keratoma hereditarium palmare et plantare. Arch Dermatol Syph (Berlin) 56:3–31

    Google Scholar 

  • Weber JL, May PE (1989) Abundant class of human DNA polymorphisms which can be typed using the polymerase chain reaction. Am J Hum Genet 44:388–396

    CAS  PubMed  Google Scholar 

  • Weber JL, Kwitek AE, May PE, Wallace MR, Collins FS, Ledbetter DH (1990) Dinucleotide repeat polymorphisms at the D17S250 and D17S261 loci. Nucleic Acids Res 18:4640

    Google Scholar 

  • Weiss RA, Eichner R, Sun TT (1984) Monoclonal antibody analysis of keratin expression in epidermal diseases: a 48- and 56- kdalton keratin as markers for hyperproliferative keratinocytes. J Cell Biol 98:1397–1406

    Google Scholar 

  • Zuliani G, Hobbs HH (1990) A high frequency of length polymorphisms in repeated sequences adjacent to Alu sequences. Am J Hum Genet 46:963–969

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Reis, A., Küster, W., Eckardt, R. et al. Mapping of a gene for epidermolytic palmoplantar keratoderma to the region of the acidic keratin gene cluster at 17q12–q21. Hum Genet 90, 113–116 (1992). https://doi.org/10.1007/BF00210752

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00210752

Keywords

Navigation