Skip to main content
Log in

Ultrastructure of intestinal and gall-bladder epithelium in the teleost Gasterosteus aculeatus L., as related to their osmoregulatory function

  • Published:
Cell and Tissue Research Aims and scope Submit manuscript

Summary

Intestinal and gall-bladder epithelial cells in sticklebacks have been examined in ultrathin sections and freeze-etch replicas. Enterocytes throughout the intestine appear to have a well-developed basal labyrinth similar to that of renal tubular cells, consisting of baso-lateral infoldings closely associated with numerous mitochondria. The lumen inside these intracellular membranes is continuous with the intercellular space via pores. Such a membrane system is also present in the epithelial cells lining the gall bladder, distinguishing them from gall-bladder cells of higher vertebrates. Morphometric analysis indicates that the basal labyrinth of enterocytes in the posterior part of the intestine increases markedly in both sexually mature males and androgen-treated females. This does not occur in the anterior part or gall bladder. In sticklebacks, androgens cause reduced urine excretion and enhanced fluid release via the anus. We conclude that the cells lining the intestine and gall bladder possess an extensive basal labyrinth that may function as a backward channel system, enabling fluid to be produced in the intestine of fish. The androgen-induced increase in the extent of the basal labyrinth in the posterior part of the intestine may be related to the enhanced rate of intestinal fluid excretion observed in sexually mature male sticklebacks.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Baggerman B (1972) Photoperiodic responses in the stickleback and their control by a daily rhythm of photosensitivity. Gen Comp Endocrinol Suppl 3:466–475

    Google Scholar 

  • Berridge MJ, Oschman JL (1972) Transporting epithelia. Academic Press, New York and London

    Google Scholar 

  • Branton D, Bullivant S, Gilula NB, Karnovsky MJ, Moor H, Northcote DH, Packer L, Satir B, Satir P, Speth V, Staehelin LA, Steere RL, Weinstein RS (1975) Freeze-etching nomenclature. Science 190:54–56

    Google Scholar 

  • De Ruiter AJH (1978) A combined structural and physiological analysis of the effect of testosterone on renal and extrarenal osmoregulation in Gasterosteus aculeatus. Gen Comp Endocrinol 34:91

    Google Scholar 

  • De Ruiter AJH (1980) Effects of testosterone on kidney structure and hydromineral regulation in the teleost Gasterosteus aculeatus L. Dissertation, State University of Groningen The Netherlands

    Google Scholar 

  • De Ruiter AJH (1981) Testosterone-dependent changes in vivo and in vitro in the structure of the renal glomeruli of the teleost Gasterosteus aculeatus L. Cell Tissue Res 219:253–266

    Google Scholar 

  • De Ruiter AJH, Mein CG (1982) Testosterone-dependent transformation of nephronic tubule cells into serous and mucous gland cells in stickleback kidneys in vivo and in vitro. Gen Comp Endocrinol 47:70–83

    Google Scholar 

  • De Ruiter AJH, Veenhuis M (in prep) Peroxisomes in intestinal and gall bladder epithelial cells of the teleost Gasterosteus aculeatus L.

  • De Ruiter AJH, Schilstra AJ, Wendelaar Bonga SE (1984) Androgen actions on intestinal participation in hydromineral balance of the three-spined stickleback Gasterosteus aculeatus L. Gen Comp Endocrinol 53:446

    Google Scholar 

  • Diamond JM, Bossert WH (1967) Standing-gradient osmotic flow: a mechanism for coupling of water and solute transport in epithelia. J Gen Physiol 50:2061–2083

    Google Scholar 

  • Diamond JM, Bossert WH (1968) Functional consequences of ultrastructural geometry in “backwards” fluid-transporting epithelia. J Cell Biol 37:694–702

    Google Scholar 

  • Diamond JM, Tormey J McD (1966) Role of long extracellular channels in fluid transport across epithelia. Nature 210:817–820

    Google Scholar 

  • Dibona DR, Mills JW (1979) Distribution of Na+-pump sites in transporting epithelia. Fed Proc 38:134–143

    Google Scholar 

  • Hale PA (1965) The morphology and histology of the digestive systems of two freshwater teleosts, Poecilia reticulata and Gasterosteus aculeatus. J Zool (Lond) 146:132–149

    Google Scholar 

  • Henderson IW, Brown JA, Oliver JA, Haywood GP (1978) Hormones and single nephron functions in fishes. In: Gaillard PJ, Boer HH (eds) Comparative endocrinology. Elsevier/North-Holland Biomedical Press, Amsterdam, pp 217–222

    Google Scholar 

  • Hickman CP, Trump BF (1969) The kidney. In: Hoar WS, Randall JD (eds) Fish physiology vol. 1. Academic Press, New York London, pp 91–239

    Google Scholar 

  • Hirano T, Bern HA (1972) The teleost gall bladder as an osmoregulatory organ. Endocrinol Japon 19:41–46

    Google Scholar 

  • Hirano T, Mayer-Gostan N (1976) Eel esophagus as an osmoregulatory organ. Proc Natl Acad Sci USA 73:1348–1350

    Google Scholar 

  • Kaye GI, Wheeler HO, Whitlock RT, Lane N (1966) Fluid transport in the rabbit gallbladder — a combined physiological and electron microscopic study. J Cell Biol 30:237–268

    Google Scholar 

  • Mourier JP (1970) Structure fine du rein de l'épinoche (Gasteros-teus aculeatus L.) au cours de sa transformation muqueuse. Z Zellforsch 106:232–250

    Google Scholar 

  • Mourier JP (1972) Étude de la cytodifférenciation du rein de l'épinoche femelle après traitement par la méthyltestotérone. Z Zellforsch 123:96–111

    Google Scholar 

  • Noaillac-Depeyre J, Gas N (1973) Mise en évidence d'une zone adaptée au transport des ions dans l'intestin de la carpe commune (Cyprinus carpio L.). CR Acad SciParis 276:773–776

    Google Scholar 

  • Shehadeh ZH, Gordon MS (1969) The role of the intestine in salinity adaptation of the rainbow trout, Salmo gairdneri. Comp Biochem Physiol 30:397–418

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    CAS  PubMed  Google Scholar 

  • Stroband HWJ, Debets FMH (1978) The ultrastructure and renewal of the intestinal epithelium of the juvenile grasscarp, Ctenopharyngodon idella (Val). Cell Tissue Res 187:181–200

    Google Scholar 

  • Wai EH, Hoar WS (1963) The secondary sex characters and reproductive behaviour of gonadectomized sticklebacks treated with methyltestosterone. Can J Zool 41:611–628

    Google Scholar 

  • Wendelaar Bonga SE, Veenhuis M (1974) The membranes of the basal labyrinth in the kidney cells of the stickleback, Gasterosteus aculeatus, studied in ultrathin sections and freeze-etch replicas. J Cell Sci 14:587–609

    Google Scholar 

  • Yamamoto T (1966) An electron microscope study of the columnar epithelial cell in the intestine of fresh water teleosts: goldfish (Carassius auratus) and rainbow trout (Salmo irideus). Z Zellforsch 72:66–78

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

de Ruiter, A.J.H., Hoogeveen, Y.L. & Wendelaar Bonga, S.E. Ultrastructure of intestinal and gall-bladder epithelium in the teleost Gasterosteus aculeatus L., as related to their osmoregulatory function. Cell Tissue Res. 240, 191–198 (1985). https://doi.org/10.1007/BF00217574

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00217574

Key words

Navigation