Skip to main content
Log in

Canal-neck interaction in vestibular nuclear neurons of the cat

  • Published:
Experimental Brain Research Aims and scope Submit manuscript

Summary

The convergence and interaction of horizontal semicircular canal and neck proprioceptive inputs were studied in neurons of the caudal two thirds of the vestibular nuclear complex. Extracellular neuron activity was recorded under muscle relaxation and slight anesthesia in chronically prepared cats. The following stimulations were applied: horizontal rotations of (a) the whole body (labyrinth stimulation), (b) the trunk vs. the stationary head (neck stimulation), and (c) the head vs. the stationary trunk (combined labyrinth and neck stimulation).

Of 152 neurons investigated, 83 (55%) showed convergence of the two inputs. In about half of these neurons, the neck input was very weak and hardly affected the labyrinthine response during head rotation. Judged from the response pattern, several of these neurons presumably were related to vestibulo-oculomotor function (i.e., vestibular nystagmus). In the other half (i.e., 27% of all neurons), sensitivity of the two inputs was similar. Both labyrinthine and neck responses contained a dynamic (“velocity”) component; neck responses of more than half of these neurons had, in addition, a static (“position”) component. The dynamic components were either “antagonistic” or “synergistic” as to their convergence during head rotation. When applying this combined stimulation, the dynamic components summed linearly, yielding subtraction in case of antagonistic convergence and addition in case of synergistic convergence. In contrast, the static components of the neck responses remained largely unchanged during head rotation. However, the static head-to-trunk deflection determined the tonic discharge level in such neurons and thus facilitated or disfacilitated the dynamic responses to superimposed labyrinth stimulation.

We suggest that the two patterns of labyrinthine-neck interaction observed in vestibular nuclear neurons, i.e., subtraction and addition, may be involved in the postural control of the trunk and head, respectively. In contrast, interference of the neck input with vestibule-oculomotor function appears to be almost negligible in the intact cat.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anastasopoulos D, Mergner T (1981) Horizontal vestibular-neck interaction in neurons of the vestibular nuclei. Pflügers Arch [Suppl] 389: R 31

    Google Scholar 

  • Becker W, Deecke L, Mergner T (1979) Neuronal responses to natural vestibular and neck stimulation in the anterior suprasylvian gyrus of the cat. Brain Res 165: 139–143

    Article  PubMed  CAS  Google Scholar 

  • Boyle R, Pompeiano O (1980) Responses of vestibulospinal neurons to sinusoidal rotation of the neck. J Neurophysiol 44: 633–649

    PubMed  CAS  Google Scholar 

  • Boyle R, Pompeiano O (1981) Convergence and interaction of neck and macular vestibular inputs on vestibulospinal neurons. J Neurophysiol 45: 852–868

    PubMed  CAS  Google Scholar 

  • Brink EE, Hirai N, Wilson VJ (1980) Influence of neck afferents on vestibulospinal neurons. Exp Brain Res 38: 285–292

    Article  PubMed  CAS  Google Scholar 

  • Corbin KB, Hinsey JC (1935) Intramedullary course of the dorsal root fibers of each of the first four cervical nerves. J Comp Neurol 63: 119–126

    Article  Google Scholar 

  • Dichgans J, Bizzi E, Morasso P, Tagliasco V (1973) Mechanisms underlying recovery of eye-head coordination following bilateral labyrinthectomy in monkeys. Exp Brain Res 18: 548–562

    PubMed  CAS  Google Scholar 

  • Donaghy M (1980) The cat's vestibulo-ocular reflex. J Physiol (Lond) 300: 337–351

    CAS  Google Scholar 

  • Duensing F, Schaefer KP (1958) Die Aktivität einzelner Neurone im Bereich der Vestibulariskerne bei Horizontalbeschleunigungen unter besonderer Berücksichtigung des vestibulären Nystagmus. Arch Psychiatr Nervenkr 198: 225–252

    Article  CAS  Google Scholar 

  • Ehrhardt KJ, Wagner A (1970) Labyrinthine and neck reflexes recorded from spinal single motoneurons in the cat. Brain Res 19: 87–104

    Article  PubMed  CAS  Google Scholar 

  • Ezure K, Schor RH, Yoshida K (1978) The response of horizontal semicircular canal afferents to sinusoidal rotation in the cat. Exp Brain Res 33: 27–39

    Article  PubMed  CAS  Google Scholar 

  • Fredrickson JM, Schwarz D, Kornhuber HH (1966) Convergence and interaction of vestibular and deep somatic afferents upon neurons in the vestibular nuclei of the cat. Acta Otolaryngol (Stockh) 61: 168–188

    Article  CAS  Google Scholar 

  • Fuller JH (1980) The dynamic neck-eye reflex in mammals. Exp Brain Res 41: 29–35

    Article  PubMed  CAS  Google Scholar 

  • Fukushima K, Peterson BW, Wilson VJ (1979) Vestibulospinal, reticulospinal and interstitiospinal pathways in the cat. In: Granit R, Pompeiano O (eds) Reflex control of posture and movement. Prog Brain Res, vol 50, Elsevier/North Holland, Amsterdam New York Oxford, pp 121–136

    Chapter  Google Scholar 

  • Hikosaka O, Maeda M (1973) Cervical effects on abducens motoneurons and their interaction with vestibulo-ocular reflex. Exp Brain Res 18: 512–530

    Article  PubMed  CAS  Google Scholar 

  • von Holst E, Mittelstaedt H (1950) Das Reafferenzprinzip (Wechselwirkungen zwischen Zentralnervensystem und Peripherie). Naturwissenschaften 37: 464–476

    Article  Google Scholar 

  • Kasper J, Thoden U (1981) Effects of natural neck afferent Stimulation on vestibulo-spinal neurons in the decerebrate cat. Exp Brain Res 44: 401–408

    Article  PubMed  CAS  Google Scholar 

  • Keller EL, Precht W (1979) Adaptive modification of central vestibular neurons in response to visual stimulation through reversing prisms. J Neurophysiol 42: 896–911

    PubMed  CAS  Google Scholar 

  • Kim JH, Partridge LD (1969) Observations on types of response to combinations of neck, vestibular, and muscle stretch signals. J Neurophysiol 32: 239–250

    PubMed  CAS  Google Scholar 

  • Kornhuber HH (1966) Physiologie und Klinik des zentral-vestibulären Systems (Blick- und Stützmotorik). In: Behrendes J, Link R, Zöllner F (Hrsg) Hals-, Nasen-, Ohrenheilkunde, Bd III/3. Thieme, Stuttgart, S 2150–2351

    Google Scholar 

  • Lindsay KW, Roberts TDM, Rosenberg JR (1976) Asymmetric tonic labyrinth reflexes and their interaction with neck reflexes in the decerebrate cat. J Physiol (Lond) 261: 583–601

    CAS  Google Scholar 

  • Magnus R (1924) Körperstellung. Springer, Berlin

    Book  Google Scholar 

  • Mergner T, Anastasopoulos D, Becker W, Deecke L (1981a) Comparison of the modes of interaction of labyrinthine and neck afferents in the suprasylvian cortex and vestibular nuclei of the cat. In: Fuchs AF, Becker W (eds) Progress in oculomotor research. Elsevier/North Holland, Amsterdam New York Oxford, pp 343–350

    Google Scholar 

  • Mergner T, Anastasopoulos D, Becker W, Deecke L (1981b) Discrimination between trunk and head rotation: A study comparing neuronal data from the cat with human psychophysics. Acta Psychologica 48: 291–302

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Deecke L, Wagner HJ (1981c) Vestibulo-thalamic projection to the anterior suprasylvian cortex of the cat. Exp Brain Res 44: 455–458

    Article  PubMed  CAS  Google Scholar 

  • Mergner T, Anastasopoulos D, Becker W (1982) Neuronal responses to horizontal neck deflection in the group x region of the cat's medullary brainstem. Exp Brain Res 45: 196–206

    PubMed  CAS  Google Scholar 

  • Mori S, Mikami A (1973) Excitation of Deiters' neurons by stimulation of the nerves to the neck extensor muscles. Brain Res 56: 331–334

    Article  Google Scholar 

  • Peterson BW, Bilotto G, Fuller JH, Goldberg J, Leeman B (1981) Interaction of vestibular and neck reflexes in the control of gaze. In: Fuchs AF, Becker W (eds) Progress in oculomotor research. Elsevier/North Holland, Amsterdam New York Oxford, pp 335–342

    Google Scholar 

  • Roberts TDM (1967) Neurophysiology of postural mechanisms, 1st edn. Butterworths, London

    Google Scholar 

  • Rubin AM, Liedgren SRC, Milne AC, Young JA, Fredrickson JM (1977) Vestibular and somatosensory interaction in the cat vestibular nuclei. Pflügers Arch 371: 155–160

    Article  PubMed  CAS  Google Scholar 

  • Wilson VJ, Maeda M, Frank JI, Shimazu H (1976) Mossy fiber neck and second-order labyrinthine projections to cat flocculus. J Neurophysiol 39: 301–310

    PubMed  CAS  Google Scholar 

  • Wilson VJ, Melvill Jones G (1979) Mammalian vestibular physiology. Plenum Press, New York London

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by Deutsche Forschungsgemeinschaft, SFB 70

Rights and permissions

Reprints and permissions

About this article

Cite this article

Anastasopoulos, D., Mergner, T. Canal-neck interaction in vestibular nuclear neurons of the cat. Exp Brain Res 46, 269–280 (1982). https://doi.org/10.1007/BF00237185

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00237185

Key words

Navigation