Skip to main content
Log in

Physiologically based pharmacokinetic models for anticancer drugs

  • General Review
  • Pharmacokinetic Models
  • Published:
Cancer Chemotherapy and Pharmacology Aims and scope Submit manuscript

Summary

The rationale and history of the development of physiologically based pharmacokinetic models are briefly reviewed in this paper. The methods of model construction and the previous application of this type of model to anticancer drugs are discussed.

Future research should be focused on the following areas: (1) interspecies scaling, (2) the effects of disease states on the pharmacokinetics of anticancer drugs, and (3) the applications of pharmocokinetics to the studies of growth behavior of cancer cells. The ultimate goal will be to utilize this basic information to design an optimal dosage regimen and treatment schedule for the safe and effective cancer chemotherapy of each individual patient.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Anderson, M. W., Eling, T. E., Lutz, R. J., Dedrick, R. L., Matthews, H. B.: The construction of a pharmacokinetic model for the disposition of polychlorinated biphenyls in the rat. Clin. Pharmacol. Ther. 22, 765–773 (1977)

    Google Scholar 

  • Ashman, M. N., Blesser, W. B., Epstein, R. M.: A nonlinear model for the uptake and distribution of halothane in man. Anesthesiology 33, 419–429 (1970)

    Google Scholar 

  • Benowitz, N., Forsyth, R. P., Melmon, K. L., Rowland, M.: Lidocaine disposition kinetics in monkey and man. I. Prediction by a perfusion model. Clin. Pharmacol. Ther. 16, 87–98 (1974a)

    Google Scholar 

  • Benowitz, N., Forsyth, R. P., Melmon, K. L., Rowland, M.: Lidocaine disposition kinetics in monkey and man. II. Effects of hemorrhage and sympathomimetic drug administration. Clin. Pharmacol. Ther. 16, 99–109 (1974b)

    Google Scholar 

  • Bischoff, K. B.: Applications of a mathematical model for drug distribution in mammals. In: Chemical engineering in medicine and biology. Hershey, D. (ed.). New York: Plenum Press 1967

    Google Scholar 

  • Bischoff, K. B.: Some fundamental considerations of the applications of pharmacokinetics to cancer chemotherapy. Cancer Chemother. Rep. [1] 59, 777–793 (1975)

    Google Scholar 

  • Bischoff, K. B., Brown, R. G.: Drug distribution in mammals. Chem. Eng. Prog. Symp. Ser. 62, (66), 32–45 (1966)

    Google Scholar 

  • Bischoff, K. B., Dedrick, R. L.: Thiopental pharmacokinetics. J. Pharm. Sci. 57, 1346–1351 (1968)

    Google Scholar 

  • Bischoff, K. B., Dedrick, R. L., Zaharko, D. S.: Preliminary model for methotrexate pharmacokinetics. J. Pharm. Sci. 59, 149–154 (1970)

    Google Scholar 

  • Bischoff, K. B., Dedrick, R. L., Zaharko, D. S., Longstreth, J. A.: Methotrexate pharmacokinetics. J. Pharm. Sci. 60, 1128–1133 (1971)

    Google Scholar 

  • Bischoff, K. B., Himmelstein, K. J., Dedrick, R. L., Zaharko, D. S.: Pharmacokinetics and cell population growth models in cancer chemotherapy. In: Chemical engineering in medicine advanced chemistry series, Vol. 118, pp. 47–64 Washington, DC: A.S.C. 1973

    Google Scholar 

  • Boxenbaum, H. G., Riegelman, S., Elashoff, R. M.: Statistical estimations in pharmacokinetics. J. Pharmacokinet. Biopharm. 2, 123–148 (1974)

    Google Scholar 

  • Chan, K. K., Cohen, J. L., Gross, J. F., Himmelstein, K. J., Bateman, J. R., Tsu-Lee, Y., Marlis, A. S.: Prediction of adriamycin disposition in cancer patients using a physiologic, pharmacokinetic model. Cancer Treat. Rep. 62, 1161–1171 (1978)

    Google Scholar 

  • Chen, C. N., Andrale, J. D.: Pharmacokinetic model for simultaneous determination of drug levels in organs and tissues. J. Pharm. Sci. 65, 717–724 (1976)

    Google Scholar 

  • Chen, H.-S. G., Gross, J. F.: Estimation of tissue-to-plasma partition coefficients used in physiological pharmacokinetic models. J. Pharmacokinet. Biopharm. 7, 117–125 (1979)

    Google Scholar 

  • Chen, H.-S. G., Gross, J. F.: The role of physiologically based pharmacokinetics in the optimal design of cytotoxic drug regimes. 71st Annual Meeting, Am. Inst. Chem. Eng., Miami, Florida, November 15, 1978

  • Chen, C. N., Coleman, D. L., Andrade, J. D., Temple, A. R.: Pharmacokinetic model for salicylate in cerebrospinal fluid, blood, organs, and tissues. J. Phar. Sci. 67, 38–45 (1978)

    Google Scholar 

  • Dedrick, R. L.: Animal scale-up. J. Pharmacokin. Biopharm. 1, 435–461 (1973)

    Google Scholar 

  • Dedrick, R. L., Bischoff, K. B.: Pharmacokinetics in applications of the artificial kidney. Chem. Eng. Prog. Symp. Ser. 64 (84), 32–44 (1968)

    Google Scholar 

  • Dedrick, R. L., Forrester, D. D., Ho, D. H. W.: In vitro-in vivo correlation of drug metabolism — deamination of 1-β-D-arabinofuranosylcytosine. Biochem. Pharmacol. 21, 1–16 (1972)

    Google Scholar 

  • Dedrick, R. L., Forrester, D. D., Cannon, J. N., El Dareer, S. M., Mellett, L. B.: Pharmacokinetics of 1-β-D-arabinofuranosylcytosine (Ara-C) deamination in several species. Biochem. Pharmacol. 22, 2405–2417 (1973a)

    Google Scholar 

  • Dedrick, R. L., Zaharko, D. S., Lutz, R. J.: Transport and binding of methotrexate in vivo. J. Pharm. Sci. 62, 882–890 (1973b)

    Google Scholar 

  • Dedrick, R. L., Zaharko, D. S., Bender, R. A., Bleyer, W. A., Lutz R. J.: Pharmacokinetic consideration of resistance to anticancer drugs. Cancer Chemother. Rep. [1] 59, 759–803 (1975)

    Google Scholar 

  • Dedrick, R. L., Myers, C. E., Bungay, P. M., DeVita, V. T., Jr.: Pharmacokinetic rationale for peritoneal drug administration in the treatment of ovarian cancer. Cancer Treat. Rep. 62, 1–11 (1978)

    Google Scholar 

  • Gabelnick, H. L., Dedrick, R. L., Bourke, R. S.: In vivo mass transfer of chloride during exchange hemodialysis. J. Appl. Physiol. 28, 636–641 (1970)

    Google Scholar 

  • Gibaldi, M., Perrier, D.: Pharmacokinetics. New York: Marcel Dekker 1975

    Google Scholar 

  • Gillis, P. P., DeAngelis, R. J., Wynn, R. L.: Nonlinear pharmacokinetic model of intravenous anesthesia. J. Pharm. Sci. 65, 1001–1006 (1976)

    Google Scholar 

  • Greene, D. S., Quintiliani, R., Nightingale, C. H.: Physiological perfusion model for cephalosporin antibiotics. I: model selection based on blood drug concentrations. J. Pharm. Sci. 67, 191–196 (1978)

    Google Scholar 

  • Harris, P. A., Gross, J. F.: Preliminary pharmacokinetic model for adriamycin (NSC-123127). Cancer Chemother. Rep. [1] 59, 819–825 (1975)

    Google Scholar 

  • Harrison, L. E., Gibaldi, M.: Physiologically based pharmacokinetic model for digoxin distribution and elimination in the rat. J. Pharm. Sci. 66, 1138–1142 (1977a)

    Google Scholar 

  • Harrison, L. I., Gibaldi, M.: Physiologically based pharmacokinetic model for digoxin disposition in dogs and its preliminary application to human. J. Pharm. Sci. 66, 1679–1683 (1977b)

    Google Scholar 

  • Himmelstein, K. J., Bischoff, K. B.: Mathematical representation of cancer chemotherapy effects. J. Pharmacokinet. Biopharm. 1, 51–68 (1973a)

    Google Scholar 

  • Himmelstein, K. J., Bischoff, K. B.: Models of Ara-C chemotherapy of L1210 leukemia in mice. J. Pharmacokinet. Biopharm. 1, 69–81 (1973b)

    Google Scholar 

  • Himmelstein, K. J., Gross, J. F.: Mathematical model for cyclocytidine pharmacokinetics. J. Pharm. Sci. 66, 1441–1444 (1977)

    Google Scholar 

  • Hoeschele, J. D., VanCamp, L.: Whole-body counting and the distribution of cis-195m-(Pt(NH3)2Cl2) in the major organs of Swiss white mice. In: Advances in antimicrobial and antineoplastic chemotherapy. Vol. 2, pp. 241–242. Baltimore, Md.: University Park Press 1972

    Google Scholar 

  • LeRoy, A. F., Dedrick, R. L., Lutz, R. J., Litterest, C. L., Guarino, A. M.: Pharmacokinetic study of cis-dichlorodiammine-platinum (DDP) in the beagle dog — thermodynamic and kinetic behavior of DDP in biological milieux. Cancer Treat. Rep. (In press, 1979)

  • Lincoln, T. L., Morrison, P. F., Aroesty, J., Carter, G. M.: The computer simulation of leukemia therapy: combined pharmacokinetics, intracellular enzyme kinetics, and cell kinetics of treatment of L1210 leukemia by cytosine arabinoside. Cancer Treat. Rep. 60, 1723–1739 (1976)

    Google Scholar 

  • Lutz, R. J., Dedrick, R. L., Straw, J. A., Hart, M. M., Klubes, P., Zaharko, D. S.: The kinetics of methotrexate distribution in spontaneous canine lymphosarcoma. J. Pharmacokinet. Biopharm. 3, 77–97 (1975)

    Google Scholar 

  • Lutz, R. J., Dedrick, R. L., Matthews, H. B., Eling, T. E., Anderson, M. W.: A preliminary pharmacokinetic model for several chlorinated biphenyls in the rat. Drug. Metab. Dispos. 5, 386–396 (1977a)

    Google Scholar 

  • Lutz, R. L., Galbraith, W. M., Dedrick, R. L., Shrager, R., Mellett, L. B.: A model for the kinetics of distribution of actinomycin D in the beagle dog. J. Pharmacol. Exp. Ther. 200, 469–478 (1977b)

    Google Scholar 

  • Montandon, B., Roberts, R. J., Fischer, L. J.: Computer simulation of sulfobromophthalein kinetics in the rat using flow-limited models with extrapolation to man. J. Pharmacokinet. Biopharm. 3, 277–290 (1975)

    Google Scholar 

  • Morrison, P. F., Lincoln, T. L., Aroesty, J.: The disposition of Ara-C and its metabolites: a pharmacokinetic simulation. Cancer chemother. Rep. [1] 59, 861–876 (1975)

    Google Scholar 

  • Munson, E. S., Eger, E. I., II, Bowers, D. L.: Effect of anesthetic-depressed ventilation and cardiac output on anesthetic uptake. Anesthesiology 38, 251–259 (1973)

    Google Scholar 

  • Smith, N. T., Zwart, A., Beneken, J. E. W.: Interaction between the circulatory effects and the uptake and distribution of halothane. Anesthesiology 37, 47–58 (1972)

    Google Scholar 

  • Tterlikkis, L., Ortega, E., Solomon, R., Day, J. L.: Pharmacokinetics of mercaptopurine. J. Pharm. Sci. 66, 1454–1457 (1977)

    Google Scholar 

  • Tuey, D. B., Matthews, H. B.: Pharmacokinetics of 3,3′,5,5′-tetrachlorobiphenyl in the male rat. Drug Metab. Dispos. 5, 444–450 (1977)

    Google Scholar 

  • Wagner, J. G.: Biopharmaceutics and relevant pharmacokinetics. Hamilton, Ill.: Drug Intelligence Publications 1971

    Google Scholar 

  • Wagner, J. G.: Fundamentals of clinical pharmacokinetics. Hamilton, Ill.: Drug Intelligence Publications 1975

    Google Scholar 

  • Zaharko, D. S., Dedrick, R. L., Bischoff, K. B., Longstreth, J. A., Oliverio, V. T.: Methotrexate tissue distribution: prediction by a mathematical model. J. Natl. Cancer Inst. 46, 775–784 (1971)

    Google Scholar 

  • Zaharko, D. S., Dedrick, R. L., Oliverio, V. T.: Prediction of the distribution of methotrexate in the sting rays Dasyatidae sabina and sayi by use of a model developed in mice. Comp. Biochem. Physiol. [A] 42, 183–194 (1972)

    Google Scholar 

  • Zaharko, D. S., Dedrick, R. L., Peale, A. L., Drake, J. C., Lutz, R. L.: Relative toxicity of methotrexate in several tissues of mice bearing Lewis lung carcinoma. J. Pharmacol. Exp. Ther. 189, 585–592 (1974)

    Google Scholar 

  • Zwart, A., Smith, N. T., Beneken, E. W.: Multiple model approach to uptake and distribution of halothane: the use of an analog computer. Comput. Biomed. Res. 5, 228–238 (1972)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chen, HS.G., Gross, J.F. Physiologically based pharmacokinetic models for anticancer drugs. Cancer Chemother. Pharmacol. 2, 85–94 (1979). https://doi.org/10.1007/BF00254079

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00254079

Keywords

Navigation