Skip to main content
Log in

Oxalate transport and calcium oxalate renal stone disease

  • Invited Editorial
  • Published:
Urological Research Aims and scope Submit manuscript

Abstract

Hyperoxaluria is considered to play a crucial role in calcium oxalate (CaOx) renal stone disease. The amount of oxalate excreted into the urine depends on intestinal absorption, endogenous production, renal clearance and renal tubular transport. Since a primary disorder has not been found so far in most CaOx stone formers and since oxalate is freely filtered at the glomerulus, most studies are presently focussed on alterations in epithelial oxalate transport pathways. Oxalate can be transported across an epithelium by the paracellular (passive) and transcellular (active) pathway. Oxalate transport across cellular membranes is mediated by anion-exchange transport proteins. A defect in the structure of these transport proteins could explain augmented transcellular oxalate transport. Little is known about the physiological regulation of oxalate transport. In this review cellular transport systems for oxalate will be summarized with special attention for the progress that has been made to study oxalate transport in a model of cultured renal tubule cells. Better understanding of the physiological processes that are involved in oxalate transport could yield information on the basis of which it might be possible to design new approaches for an effective treatment of CaOx stone disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Aronson PS (1989) The renal proximal tubule: a model for diversity of anion exchangers and stilbene-sensitive anion transporters. Ann Rev Physiol 51:419

    Google Scholar 

  2. Baggio B, Gambaro G, Marchini F, Cicerello E, Borsatti A (1984) Raised transmembrane oxalate flux in red blood cells in idiopathic calcium oxalate nephrolithiasis. Lancet II:12

    Google Scholar 

  3. Barker DJP, Morris JA, Margetts BM (1988) Diet and renal stones in 72 areas in England and Wales. Br J Urol 62:315

    Google Scholar 

  4. Baum M, Berry CA (1985) Peritubular proteins modulates neutral active NaCl absorption in rabbit proximal convoluted tubule. Am J Physiol 248:F790

    Google Scholar 

  5. Berry CA (1982) Heterogeneity of tubular transport processes in the nephron. Ann Rev Physiol 44:181

    Google Scholar 

  6. Berry C, Rector F (1989) Electroneutral NaCl absorption in the proximal tubule: mechanisms of apical Na-coupled transport. Kidney Int 36:403

    Google Scholar 

  7. Besseghir K, Roch-Ramel F (1987) Renal excretion of drugs and other xenobiotics. Renal Physiol 10:221

    Google Scholar 

  8. Besseghir K, Mosig D, Roch-Ramel F (1989) Facilitation by serum albumin of renal tubular secretion of organic anions. Am J Physiol 256:F475

    Google Scholar 

  9. Borsatti A (1991) Calcium oxalate nephrolithiasis: defective oxalate transport. Kidney Int 39:1283

    Google Scholar 

  10. Cattell WR, Spencer AG, Taylor GW, Watts RWE (1962) The mechanism of the renal excretion of oxalate in the dog. Clin Sci 22:43

    Google Scholar 

  11. David C, Ullrich KJ (1992) Substrate specificity of the luminal Na+-dependent sulphate transport system in the proximal renal tubule as compared to the contraluminal sulphate exchange system. Pflügers Arch 421:45

    Google Scholar 

  12. Dawson MA, Renfro JL (1990) Organic anion secretion by winter flounder renal proximal tubule primary monolayer cultures. J Pharmacol Exp Ther 254:39

    Google Scholar 

  13. de Rouffignac C, Elalouf JM (1988) Hormonal regulation of chloride transport in the proximal and distal nephron. Ann Rev Physiol 50:123

    Google Scholar 

  14. Fritz G, Rumrich G, Ullrich KJ (1989) Anion transport through the contraluminal cell membrane of renal proximal tubule. The influence of hydrophobicity and molecular charge distribution on the inhibitory activity of organic anions. Biochim Biophys Acta 978:249

    Google Scholar 

  15. Greger R, Lang F, Oberleithner H, Deetjen P (1978) Handling of oxalate by the rat kidney. Pflügers Arch 374:243

    Google Scholar 

  16. Griffith HM, O'Shea B, Maguire M, Keogh B, Kevany JP (1986) A case-control study of dietary intake of renal stone patients. Urol Res 14:75

    Google Scholar 

  17. Handler JS (1989) Overview of epithelial polarity. Ann Rev Physiol 51:729

    Google Scholar 

  18. Handler JS, Perkins FM, Johnson JP (1980) Studies of renal cell function using cell culture techniques. Am J Physiol 238:F1

    Google Scholar 

  19. Hatch M, Vaziri ND (1991) Segmental differences in intestinal oxalate transport. FASEB J 5:A1138

    Google Scholar 

  20. Hatch M, Freel RW, Vaziri ND (1993) Characteristics of the transport of oxalate and other ions across rabbit proximal colon. Pflügers Arch 423:206

    Google Scholar 

  21. Hatch M, Freel RW, Vaziri ND (1994) Intestinal excretion of oxalate in chronic renal failure. J Am Soc Nephrol 5:1339

    Google Scholar 

  22. Hatch M, Freel RW, Vaziri ND (1994) Mechanisms of oxalate absorption and secretion across the rabbit distal colon. Pflügers Arch 426:101

    Google Scholar 

  23. Hautmann RE (1993) The stomach: a new and powerful oxalate absorption site in man. J Urol 149:1401

    Google Scholar 

  24. Heintze H, Petersen KU (1980) Specific inhibition of colonic chloride secretion by loop diuretics. Fed Proc Fed Am Soc Exp Biol 39:738

    Google Scholar 

  25. Hori R, Okamura M, Takayama A, Hirozane K, Takano M (1993) Transport of organic anion in the OK kidney epithelial cell line. Am J Physiol 264:F975

    Google Scholar 

  26. Hull RN, Cherry WR, Weaver GW (1976) The origin and characteristics of a pig kidney cell strain, LLC-PK1. In Vitro 10:670

    Google Scholar 

  27. Karniski LP, Aronson PS (1985) Chloride/formate exchange with formic acid recycling: a mechanism of active chloride transport across epithelial membranes. Proc Natl Acad Sci USA 82:6362

    Google Scholar 

  28. Karniski LP, Aronson PS (1987) Anion exchange pathways for Cl- transport in rabbit renal microvillus membranes. Am J Physiol 253:F513

    Google Scholar 

  29. Knickelbein RG, Dobbins JW (1990) Sulfate and oxalate exchange for bicarbonate across the basolateral membrane of rabbit ileum. Am J Physiol 259:G807

    Google Scholar 

  30. Knickelbein RG, Aronson P, Dobbins JW (1986) Oxalate transport by anion exchange across rabbit ileal brush border. J Clin Invest 77:170

    Google Scholar 

  31. Knight FK, Senekjian HO, Weinman EJ (1979) Effect of para-aminohippurate on renal transport of oxalate. Kidney Int 15:38

    Google Scholar 

  32. Knight TF, Sansom SC, Senekjian HO, Weinman EJ (1981) Oxalate secretion in the rat proximal tubule. Am J Physiol 240:F295

    Google Scholar 

  33. Kok DJ, Khan SR (1994) Calcium oxalate nephrolithiasis, a free or fixed particle disease. Kidney Int 46:847

    Google Scholar 

  34. Koul H, Ebisuno S, Renzulli L, Yanagawa M, Menon M, Scheid C (1994) Polarized distribution of oxalate transport systems in LLC-PK1 cells, a line of renal epithelial cells. Am J Physiol 266:F266

    Google Scholar 

  35. Kreisberg JI, Wilson PD (1988) Renal cell culture. J Electron Microsc Techn 9:235

    Google Scholar 

  36. Kuo SM, Aronson PS (1988) Oxalate transport via the sulfate/HCO3 exchanger in rabbit renal basolateral membrane vesicles. J Biol Chem 263:9710

    Google Scholar 

  37. Larsson L, Tiselius HG (1987) Hyperoxaluria. Min Electr Metab 13:242

    Google Scholar 

  38. Löw I, Friedrich T, Burckhardt G (1984) Properties of an anion exchanger in rat renal basolateral membrane vesicles. Am J Physiol 246:F334

    Google Scholar 

  39. Maddox DA, Gennari JF (1987) The early proximal tubule: a high-capacity delivery-responsive reabsorptive site. Am J Physiol 252:F573

    Google Scholar 

  40. McConnel KR, Aronson PS (1994) Effects of inhibitors on anion exchangers in rabbit renal brush border membrane vesicles. J Biol Chem 269:21489

    Google Scholar 

  41. Menon M, Mahle CJ (1982) Oxalate metabolism and renal calculi. J Urol 127:148

    Google Scholar 

  42. Menon M, Koul H (1992) Calcium oxalate nephrolithiasis. J Clin Endocrin Metab 74:703

    Google Scholar 

  43. Miller JH (1992) Sodium-sensitive, probenicid-insensitive p-aminohippuric acid uptake in cultured renal proximal tubule cells of the rabbit. Proc Soc Exp Biol Med 199:298

    Google Scholar 

  44. Mullin JM, O'Brien T (1987) Spontaneous reversal of polarity of the voltage across LLC-PK1 renal epithelial cell sheets. J Cell Physiol 133:515

    Google Scholar 

  45. Mullin JM, Fluk L, Kleinzeller A (1986) Basal-lateral transport flux of methyl α-d-glucoside across LLC-PK1 renal epithelial cells. Biochim Biophys Acta 885:233

    Google Scholar 

  46. Murer H, Kinne R (1980) The use of isolated membrane vesicles to study epithelial transport processes. J Membrane Biol 55:81

    Google Scholar 

  47. Oswald H, Hautman R (1979) Renal elimination kinetics and plasma half-life of oxalate in man. Urol Int 34:440

    Google Scholar 

  48. Rabito CA (1986) Sodium cotransport processes in renal epithelial cell lines. Min Electr Metab 12:32

    Google Scholar 

  49. Rector F (1983) Sodium, bicarbonate, and chloride absorption by the proximal tubule. Am J Physiol 244:F461

    Google Scholar 

  50. Robertson WG (1985) Dietary factors important in calcium stone formation. In: Schwille PO, Smith LH, Robertson WG, Vahlensieck W (eds) Urolithiasis and related clinical research. Plenum, New York, p 61

    Google Scholar 

  51. Robertson WG, Peacock M (1980) The cause of idiopathic calcium stone disease: hypercalciuria or hyperoxaluria? Nephron 26:105

    Google Scholar 

  52. Robertson WG, Peacock M, Heyburn PJ, Marshal DH, Clark PB (1978) Risk factors in calcium stone disease of the urinary tract. Br J Urol 50:449

    Google Scholar 

  53. Schild L, Giebisch G (1988) Chloride transport in the proximal renal tubule. Ann Rev Physiol 50:97

    Google Scholar 

  54. Senekjian HO, Weinman EJ (1982) Oxalate transport by proximal tubule of the rabbit kidney. Am J Physiol 243:F271

    Google Scholar 

  55. Simmons NL, Tivey DR (1992) The effect of hyperosmotic challenge upon ion transport in cultured renal epithelial layers (MDCK). Pflügers Arch 421:503

    Google Scholar 

  56. Simons K, Fuller SD (1985) Cell surface polarity in epithelia. Ann Rev Cell Biol 1:243

    Google Scholar 

  57. Smith LH (1987) Pathogenesis of renal stones. Min Electr Metab 13:214

    Google Scholar 

  58. Smith LH (1990) Idiopathic calcium oxalate urolithiasis. Endocr Metab Clin North Am 19:937

    Google Scholar 

  59. Sutton RAL, Walker VR (1994) Enteric and mild hyperoxaluria. Min Electr Metab 20:352

    Google Scholar 

  60. Takano M, Hirozane K, Okamura M, Takayama A, Nagai J, Hori R (1994) p-Aminohippurate transport in apical and basolateral membranes of the OK kidney epithelial cells. J Pharm Exp Therap 269:970

    Google Scholar 

  61. Tremaine LM, Bird JE, Quebbemann AJ (1985) Renal tubular excretory transport of oxalate in the chicken. J Pharm Exp Ther 233:7

    Google Scholar 

  62. Ullrich KJ (1994) Specificity of transporters for ‘organic anions’ and ‘organic cations’ in the kidney. Biochem Biophys Acta 1197:45

    Google Scholar 

  63. Ullrich KJ, Rumrich G (1988) Contraluminal transport systems in the proximal renal tubule involved in secretion of organic anions. Am J Physiol 254:F453

    Google Scholar 

  64. Ullrich KJ, Rumrich G, Klöss S (1984) Contraluminal sulfate transport in the proximal tubule of the rat kidney. Pflügers Arch 402:264

    Google Scholar 

  65. Velazquez H, Wright FS (1986) Effects of diuretic drugs on Na, Cl and K transport by rat renal distal tubule. Am J Physiol 250:F1013

    Google Scholar 

  66. Verkoelen CF, Romijn JC, de Bruijn WC, Boevé ER, Cao LC, Schröder FH (1993) Absence of a transcellular oxalate transport mechanism in LLC-PK1 and MDCK cells cultured on porous supports. Scann Microsc 3:1031

    Google Scholar 

  67. Verkoelen CF, Romijn JC, de Bruijn WC, Boevé ER, Cao LC, Schröder FH (1995) Association of calcium oxalate monohydrate crystals with MDCK cells. Kidney Int 48:129

    Google Scholar 

  68. Wandzilak TR, Williams HE (1990) The hyperoxaluric syndromes. Endocr Metab Clin N Am 19:851

    Google Scholar 

  69. Wandzilak TR, Calo L, Borsatti A, Williams HE (1992) Oxalate transport in cultured porcine renal epithelial cells. Urol Res 20:341

    Google Scholar 

  70. Wang T, Giebisch G, Aronson PS (1992) Effects of formate and oxalate on volume absorption in rat proximal tubule. Am J Physiol 263:F37

    Google Scholar 

  71. Wang T, Agulian SK, Giebisch G, Aronson P (1993) Effects of formate and oxalate on chloride absorption in rat distal tubule. Am J Physiol 264:F730

    Google Scholar 

  72. Wareing M, Green R (1994) Effects of formate and oxalate on fluid reabsorption from the proximal convoluted tubule of the anaesthesized rat. J Physiol 447:347

    Google Scholar 

  73. Weinman EJ, Frankfurt SJ, Ince A, Sansom S (1978) Renal tubular transport of organic acids. Studies with oxalate and para-aminohippurate in the rat. J Clin Invest 61:801

    Google Scholar 

  74. Williams AW, Wilson DM (1990) Dietary intake, absorption, metabolism and excretion of oxalate. Sem Nephrol 10:2

    Google Scholar 

  75. Williams HE, Wandzilak TR (1989) Oxalate synthesis, transport and the hyperoxaluric syndromes. J Urol 141:742

    Google Scholar 

  76. Wong KR, Berry CA, Cogan MG (1995) Chloride transport in the rat S1 proximal tubule. Am J Physiol 268:F723

    Google Scholar 

  77. Yamakawa K, Kawamura J (1990) Oxalate: OH exchange across rat renal cortical brush border membrane. Kidney Int 37:1105

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Verkoelen, C.F., Romijn, J.C. Oxalate transport and calcium oxalate renal stone disease. Urol. Res. 24, 183–191 (1996). https://doi.org/10.1007/BF00295891

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00295891

Key words

Navigation