Skip to main content
Log in

Effects of cyclosporins and transforming growth factor β1 on thyroid hormone action in cultured fetal rat limb bones

  • Clinical Investigations
  • Published:
Calcified Tissue International Aims and scope Submit manuscript

Summary

To study the mechanism of action of thyroid hormones on bone, we examined the effects of immunosuppresive and nonimmunosuppressive cyclosporins, as well as of transforming growth factor β1 (TGFβ1), 17β-estradiol (E2), and dihydroxytestosterone (DHT) on thyroxine (T4)-and triiodothyronine (T3)-stimulated bone resorption in fetal rat limb bones. The immunosuppressive cyclosporins A (CsA) and G (CsG) inhibited thyroid hormone (T4+T3)-stimulated resorption and β-glucuronidase release into the culture medium, whereas the weak or nonimmunosuppressive cyclosporins D (CsD) and H (CsH) did not show this effect. Increasing the medium calcium concentration reduced the ability of T4 to stimulate 45Ca release, while not significantly affecting the response to CsA. TGFβ1 elicited a biphasic effect when administered together with T4. During the first 3 days of culture, TGFβ1 elicited a small, nonsignificant decrease in released 45Ca; during a subsequent 3 days of culture, it enhanced T4-stimulated bone resorption significantly. These effects differed from those of TGFβ1 on parathormone-stimulated resorption. E2 and DHT did not influence the action of T4 on bone tissue. These results suggest that the mechanism of action of thyroid hormones on bone may involve immune factors, as well.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Krane SM (1971) Skeletal system, neuromuscular system, emotions and mentation. In: Ingbar SH, Werner SC (eds) Harper & Row, New York, pp 598–615

    Google Scholar 

  2. Allwerx J, Bouillon R (1986) Mineral and bone metabolism in thyroid disease: a review. Quart J Med 232:737–752

    Google Scholar 

  3. Michie W, Duncan T, Hamer-Hodges DW, Bewsher PD, Hems G, Showers JM, Pegg CAS, Hedley AJ (1971) Mechanism of hypocalcemia after thyroidectomy for thyrotoxicosis. Lancet 1:508–513

    Google Scholar 

  4. Fraser SA, Anderson JB, Smith DA, Wilson GM (1971) Osteoporosis and fractures following thyrotoxicosis. Lancet i:981–983

    Google Scholar 

  5. Krolner B, Jorgensen JV, Nielsen SP (1983) Spinal bone mineral content in myxoedema and thyrotoxicosis, effects of thyroid hormone(s) and antithyroid treatment. Clin Endocrinol 18:439–446

    Google Scholar 

  6. Toh SH, Claunch BC, Brown PH (1985) Effects of hyperthyroidism and its treatment on bone mineral content. Arch Int Med 145:883–886

    Google Scholar 

  7. Lakatos P, Hollo I, Horvath Cs (1986) Severe postmenopausal osteoporosis and thyroid hormones. Arch Int Med 146:1859

    Google Scholar 

  8. Kragstrup J, Melsen F, Mosekilde L (1981) Effects of thyroid hormone(s) on mean wall thickness of trabecular bone pockets. Metab Bone Dis Rel Res 3:181–185

    Google Scholar 

  9. Fallon MD, Perry HM III, Bergfeld M, Droke D, Teitelbaum SL, Avioli LV (1983) Exogenous hyperthyroidism with osteoporosis. Arch Int Med 143:442–445

    Google Scholar 

  10. Ross DS, Neer RM, Ridgway EC, Daniels GH (1987) Subclinical hyperthyroidism and reduced bone density as a possible result of prolonged suppression of the pituitary-thyroid axis with L-thyroxine. Am J Med 82:1167–1170

    Google Scholar 

  11. Taelman P, Kaufman JM, Janssens X, Vandecauter H, Vermeulen A (1990) Reduced forearm bone mineral content and biochemical evidence of increased bone turnover in women with euthyroid goitre treated with thyroid hormone. Clin Endocrinol 33:107–117

    Google Scholar 

  12. Lakatos P, Tarian G, Foldes J, Krasznai I, Hollo I (1987) The effect of thyroid treatment on bone mineral content in patients with hypothyroidism and euthyroid benign adenoma. In: Christiansen C, Johansen JS, Riis BJ (eds) Proc Intl Symp on Osteoporosis, Vol 1. Denmark, September 27–October 2, Osteopress Aps, Copenhagen, Denmark, pp 452–453

    Google Scholar 

  13. Mundy GR, Shapiro JL, Bandelin JG, Canalis EM, Raisz LG (1976) Direct stimulation of bone resorption by thyroid hormones. J Clin Invest 58:529–534

    Google Scholar 

  14. Mundy GR, Raisz LG (1979) Thyrotoxicosis and calcium metabolism. Miner Electrolyte Metab 2:285–292

    Google Scholar 

  15. Klaushofer K, Hoffmann O, Gleispach H, Leis H, Czerwenka E, Koller K, Peterlik M (1989) Bone-resorbing activity of thyroid hormones is related to prostaglandin production in cultured neonatal mouse calvaria. J Bone Miner Res 4:305–312

    Google Scholar 

  16. Hoffmann O, Klaushofer K, Koller K, Peterlik M, Mavreas T, Stern P (1986) Indomethacin inhibits thrombin-, but not thyroxin-stimulated resorption of fetal rat limb bones. Prostaglandins 31:601–607

    Google Scholar 

  17. Grossman CJ (1991) Immunoendocrinology. In: Greenspan FS (ed) Basic and clinical endocrinology. Appleton & Lange, Norwalk, CT/San Mateo, CA, pp 188–246

    Google Scholar 

  18. Fibbe WE, Claas FH, Van der Star-Dijkstra W, Schaafsma MR, Meyboom RH, Falkenburg JH (1986) Agranulocytosis induced by propylthiouracil: evidence of drug dependent antibody reacting with granulocytes, monocytes and hematopoietic progenitor cells. Br J Haematol 64:363–373

    Google Scholar 

  19. Burman KD, Baker JR Jr (1985) Immune mechanisms in Graves' disease. End Rev 6:183–232

    Google Scholar 

  20. Mundy GR (1990) Immune system and bone remodeling. TEM July/August 307–311

  21. Stewart PJ, Green OC, Stern PH (1986) Cyclosporine A inhibits calcemic hormone-induced bone resorption in vitro. J Bone Miner Res 1:285–291

    Google Scholar 

  22. Stewart PJ, Stern PH (1989) Cyclosporines: correlation of immunosuppressive activity and inhibition of bone resorption. Calcif Tissue Int 45:222–226

    Google Scholar 

  23. Pfeilschifter JP, Seyedin S, Mundy GR (1988) Transforming growth factor β inhibits bone resorption in fetal rat long bone cultures. J Clin Invest 82:680–685

    Google Scholar 

  24. Tashijan AH Jr, Voelkel EF, Lazzaro M, Singer FR, Roberts AB, Derynck R, Winkler ME, Levine L (1985) α and β human transforming growth factors stimulate prostaglandin production and bone resorption in cultured mouse calvaria. Proc Natl Acad Sci USA 82:4535–4538

    Google Scholar 

  25. Stern PH (1969) Inhibition by steroids of parathyroid hormone-induced 45Ca release from embryonic rat bone in vitro. J Pharmacol Exp Ther 168:211–217

    Google Scholar 

  26. Stern PH, Krieger NS (1983) Comparison of fetal rat limb bones and neonatal mouse calvaria: effects of parathyroid hormone and 1,25-(OH)2D3. Calcif Tissue Int 35:172–176

    Google Scholar 

  27. Movsowitz C, Epstein S, Fallon M, Ismail F, Thomas S (1988) Cyclosporin A in vivo produces severe osteopenia in the rat: effect of dose and duration of administration. Endocrinology 123:2571–2577

    Google Scholar 

  28. Schlosberg M, Movsowitz C, Epstein S, Ismail F, Fallon M, Thomas S (1989) The effect of cyclosporin A administration and its withdrawal on bone mineral metabolism in the rat. Endocrinology 124:2179–2184

    Google Scholar 

  29. Loertscher R, Thiel G, Hardner F, Brunner FP (1983) Persistent elevation of alkaline phosphatase in cyclosporine-treated renal transplant patients. Transplantation 36:115–117

    Google Scholar 

  30. Briner V, Brunner FP, Landmann J, Ritz E, Dambacher MA, Thiel G (1987) Raised bone alkaline phosphatase levels in patients (PTS) on cyclosporine A (CsA): bone disease or repair. Kidney Int 32:431

    Google Scholar 

  31. Aubia J, Masramon J, Serrano S, Lloveras J, Marinoso L (1988) Bone histology in renal transplant patients receiving cyclosporin. Lancet 1:1048

    Google Scholar 

  32. Rich GM, Mudge G, LeBoff MS (1990) Cyclosporin A-associated osteoporosis in cardiac transplant patients. J Bone Miner Res 5(S2):439

    Google Scholar 

  33. Epstein S, Stein B, Halloran B, Takizawa M (1990) Cyclosporin A increases endogenous production of 1,25(OH)2D (#1 and 2). J Bone Miner Res 5:(S):493–494

    Google Scholar 

  34. Taylor CM, Caverzasio J, Jung A, Trechsel U, Fleish H, Bonjour JP (1983) Unilateral nephrectomy and 1,25-dihydroxyvitamin D3. Kidney Int 24:37–42

    Google Scholar 

  35. Almond JR, Bales CW, Lobaugh B, Klotman PE, Drezner MK (1989) Regulation of renal 25-hydroxyvitamin D-1-hydroxylase activity in the mouse after uninephrectomy. Endocrinology 124:2118–2121

    Google Scholar 

  36. Langman CB, Ford KK, Pachman LM, Glorieux F (1990) Vitamin D metabolism in rats with adjuvant-induced arthritis. J Bone Miner Res 5:905–912

    Google Scholar 

  37. del Pozo E, Graeber M, Elford P, Payne T (1990) Regression of bone and cartilage loss in adjuvant arthritic rats after treatment with cyclosporin A. Arthritis Rheum 33:247–252

    Google Scholar 

  38. Gelfand EW, Cheung RK, Mills GB (1987) The cyclosporins inhibit lymphocyte activation at more than one site. J Immunol 138:1115–1120

    Google Scholar 

  39. Nicchitta C, Kamoun M, Williamson JR (1985) Cyclosporine augments receptor-mediated cellular Ca2+ fluxes in isolated hepatocytes. J Biol Chem 260:13613–13618

    Google Scholar 

  40. Draznin B, Metz SA, Sussman KE, Leitner JW (1988) Cyclosporine-induced inhibition of insulin release. Possible role of voltage-dependent calcium transport channels. Biochem Pharmacol 37:3941–3945

    Google Scholar 

  41. Colombani PM, Robb A, Hess AD (1985) Cyclosporin A binding to calmodulin: a possible site of action on T lymphocytes. Science 228:337–339

    Google Scholar 

  42. LeGrue SJ, Turner R, Weisbrodt N, Dedman JR (1986) Does the binding of cyclosporine to calmodulin result in immunosuppression? Science 234:68–71

    Google Scholar 

  43. Szamel M, Berger P, Resch K (1984) Cyclosporin A inhibits lymphocyte activation by interfering with the early activation of plasma phospholipid metabolism. J Immunol 167:864–870

    Google Scholar 

  44. Szamel M, Martin M, Resch ZK (1985) Inhibition of lymphocyte activation by cyclosporin A: interference with the early activation of the membrane phospholipid metabolism in rabbit lymphocytes stimulated with concanavalin A, anti-rabbit immunoglobulin or the Ca2+ ionophore A 23187. Cell Immunol 93:239–249

    Google Scholar 

  45. Lakatos P, Stern PH (1991) Triiodothyronine stimulates the inositol phosphate second messenger pathway in bone. Calcif Tissue Int 48:53

    Google Scholar 

  46. Chenu C, Pfeilschifter J, Mundy GR, Roodman GD (1988) Transforming growth factor β inhibits formation of osteoclast-like cells in long-term human marrow cultures. Proc Natl Acad Sci USA 85:5683–5687

    Google Scholar 

  47. Soskolne WA, Schwartz Z, Goldstein M, Ornoy A (1990) The biphasic effect of triiodothyronine compared to bone-resorbing effect of PTH on bone modelling of mouse long bone in vitro. Bone 11:301–307

    Google Scholar 

  48. Pilbeam CC, Klein-Nulend J, Raisz LG (1989) Inhibition by 17β-estradiol of PTH-stimulated resorption and prostaglandin production in cultured neonatal mouse calvariae. Biochem Biophys Res Commun 163:1319–1324

    Google Scholar 

  49. Pilbeam CC, Raisz LG (1990) Effects of androgens on parathyroid hormone and interleukin-1-stimulated prostaglandin production in cultured neonatal mouse calvariate. J Bone Miner Res 5:1183–1188

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lakatos, P., Stern, P.H. Effects of cyclosporins and transforming growth factor β1 on thyroid hormone action in cultured fetal rat limb bones. Calcif Tissue Int 50, 123–128 (1992). https://doi.org/10.1007/BF00298788

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00298788

Key words

Navigation