Skip to main content
Log in

The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12

  • Published:
Anatomy and Embryology Aims and scope Submit manuscript

Summary

Twenty-four embryos of stage 12 (26 days) were studied in detail and graphic reconstructions of five of them were prepared. The characteristic features of this stage are 21–29 pairs of somites, incipient or complete closure of the caudal neuropore, and the appearance of upper limb buds. The caudal neuropore closes during stage 12, generally when 25 somititc pairs are present. The site of final closure is at the level of future somite 31, which corresponds to the second sacral vertebral level. Non-closure of the neuropore may be important in the genesis of spina bifida aperta at low levels. The primitive streak probably persists until the caudal neuropore closes, when it is replaced by the caudal eminence or end-bud (Endwulst oder Rumpfknospe). The caudal eminence, which appears at stage 9, gives rise inter alia to hindgut, notochord, caudal somites, and the neural cord. The material for somites 30–34 (which appear in stage 13) is laid down during stage 12, and its absence would be expected to result in sacral agenesis. Aplasia of the caudal eminence results in cloacal deficiency and various degrees of symmelia.

The junction of primary and secondary development (primäre und sekundäre Körperentwicklung) is probably at the site of final closure of the caudal neuropore. Secondary neurulation begins during stage 12. The cavity of the already formed spinal cord extends into the neural cord, and isolated spaces are not found within the neural cord. Primary and secondary neurulation are probably coextensive with primary and secondary development of the body, respectively. The telencephalon medium has enlarged two mesencephalic segments (M1 and M2) are distinguishable, and rhombomere 4 is reduced. The sulcus limitans is detectable in the spinal cord and hindbrain (RhD), and in the mesencephalon and diencephalon, where it extends as far rostrally as the optic sulcus in D1. A marginal layer is appearing in the rhombencephalon and mesencephalon. The first nerve fibres are differentiating, chiefly within the hindbrain (from the nucleus of the lateral longitudinal tract). Optic neural crest is at its maximum, and the otic vesicle is giving crest cells to ganglion 7/8. Neural crest continues to develop in the brain and contributes to cranial ganglia 5, 7/8, and 10/11. The spinal crest extends as far caudally as somites 18–19 but shows no subdivision into ganglia yet. Placodal contribution to the trigeminal ganglion is not certain at stage 12. Such a contribution to ganglion 7/8 is not unlikely. Involvement of neural crest in the formation of the derivatives of pharyngeal arches 1 and 2 is possible but has not yet been confirmed in the human embryo.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Altman J, Bayer S (1982) Development of the cranial nerve ganglia and related nuclei in the rat. Adv Anat Embryol Cell Biol 74:1–90

    Google Scholar 

  • Ayer-Le Lièvre CS, Le Douarin NM (1982) The early development of cranial sensory ganglia and the potentialities of their component cells studied in quail-chick chimeras. Dev Biol 94:291–310

    Google Scholar 

  • Bartelmez GW, Blount MP (1954) The formation of neural crest from the primary optic vesicle in man. Contrib Embryol Carnegie Instn 35:55–71

    Google Scholar 

  • Bartelmez GW, Dekaban AS (1962) The early development of the human brain. Contrib Embryol Carnegie Instn 37:13–32

    Google Scholar 

  • Bossy J (1980) Development of olfactory and related structures in staged human embryos. Anat Embryol 161:225–236

    Google Scholar 

  • Brewer JI (1938) A human embryo in the bilaminar blastodisc stage (the Edwards-Jones-Brewer ovum). Contrib Embryol Carnegie Instn 27:85–93

    Google Scholar 

  • Duhamel B (1966) Morphogenèse pathologique. Masson, Paris

    Google Scholar 

  • Ferner H (1939) Zur Differenzierung der Rumpf-Schwanzknospe beim Menschen. Z Mikrosk Anat Forsch 45:555–562

    Google Scholar 

  • Frank GM (1925) Über Gesetzmässigkeiten in der Mitosenverteilung in den Gehirnblasen im Zusammenhange mit Formbildungsprozessen. Arch Mikr Anat Entw Mech 104:262–272

    Google Scholar 

  • Girgis A (1926) Description of a human embryo of 22 paired somites. J Anat 60:382–411

    Google Scholar 

  • Goodrum GR, Jacobson AG (1981) Cephalic flexure formation in the chick embryo. J Exp Zool 216:399–408

    Google Scholar 

  • Hamersma K (1966) Anencephalie en spina bifida. Thesis, Romijn, Apeldoorn, pp 168

  • His W (1880) Anatomie menschlicher Embryonen: Embryonen des ersten Monats. Vogel, Leipzig

    Google Scholar 

  • His W (1904) Die Entwicklung des menschlichen Gehirns während der ersten Monate. Hirzel, Leipzig

    Google Scholar 

  • Holmdahl E (1926) Die erste Entwicklung des Körpers bei den Vögeln und Säugetieren, inkl. dem Menschen, besonders mit Rücksicht auf die Bildung des Rückenmarks, des Zöloms und der entodermalen Kloake nebst einem Exkurs über die Entstehung der Spina bifida in der Lumbosakralregion. II-V. Gegenbaurs Morphol Jb 55:112–208

    Google Scholar 

  • Holmdahl E (1933) Die zweifache Bildungsweise des zentralen Nervensystems bei den Wirbeltieren. Eine formgeschichtliche und materialgeschichtliche Analyse. Wilhelm Roux Arch Entw Mech Org 129:206–254

    Google Scholar 

  • Holmdahl E (1934) Neuralleiste und Ganglienleiste beim Menschen. Z Mikrosk Anat Forsch 36:137–178

    Google Scholar 

  • Holmdahl E (1935) Primitivstreifen bzw. Rumpfschwanzknospe im Verhältnis zur Körperentwicklung. Z Mikrosk Anat Forsch 38:409–440

    Google Scholar 

  • Hughes AF, Freeman RB (1974) Comparative remarks on the development of the tail cord among higher vertebrates. J Embryol Exp Morphol 32:355–363

    Google Scholar 

  • Keibel F (1910) The formation of the germ layers and the gastrulation problem. In: Keibel, Mall (eds) Manual of Human Embryology, vol 1, Lippincott, Philadelphia, pp 43–58

    Google Scholar 

  • Le Douarin NM (1986) Cell line segregation during peripheral nervous system ontogeny. Science 231:1515–1522

    Google Scholar 

  • Le Lièvre C (1974) Rôle des cellules mésectodermiques issues des crêtes neurales céphaliques dans la formation des arcs branchiaux du squelette viscéral. J Embryol Exp Morphol 31:453–477

    Google Scholar 

  • Lemire RJ, Loeser JD, Leech RW, and Alvord EC (1975) Normal and Abnormal. Development of the Human Nervous System. Harper & Row, Hagerstown

    Google Scholar 

  • Lemire RJ, Shepard TH, and Alvord EC (1965) Caudal myeloschisis (lumbo-sacral spina bifida cystica) in a five millimeter (horizon XIV) human embryo. Anat Rec 152:9–16

    Google Scholar 

  • Mori T (1965) Histochemical studies on the distribution of alkaline phosphatase in early human embryos. III. Embryos in Streeter's Horizon XII. Okajimas Folia Anat Jap 40:765–793

    Google Scholar 

  • Müller F, O'Rahilly R (1980) The early development of the nervous system in staged insectivore and primate embryos. J Comp Neurol 193:741–751

    Google Scholar 

  • Müller F, O'Rahilly R (1983) The first appearance of the major divisions of the human brain at stage 9. Anat Embryol 168:419–432

    Google Scholar 

  • Müller F, O'Rahilly R (1984) Cerebral dysraphia (future anencephaly) in a human twin embryo at stage 13. Teratology 30:167–177

    Google Scholar 

  • Müller F, O'Rahilly R (1985) The first appearance of the neural tube and optic primordium in the human embryo at stage 10. Anat Embryol 172:157–169

    Google Scholar 

  • Müller F, O'Rahilly R (1986a) The development of the human brain and the closure of the rostral neuropore at stage 11. Anat Embryol 175:205–222

    Google Scholar 

  • Müller F, O'Rahilly R (1986b) Somitic-vertebral correlation and vertebral levels in the human embryo. Am J Anat 177:1–19

    Google Scholar 

  • Narayanan CH, Naryanan Y (1978) Determination of the embryonic origin of the mesencephalic nucleus of the trigeminal nerve in birds. J Embryol Exp Morphol 43:85–105

    Google Scholar 

  • Narayanan CH, Narayanan Y (1980) Neural crest and placodal contributions in the development of the glossopharyngeal-vagal complex in the chick. Anat Rec 196:71–82

    Google Scholar 

  • Nichols DH (1986a) Mesenchyme formation from the trigeminal placodes of the mouse embryo. Am J Anat 176:19–31

    Google Scholar 

  • Nichols DH (1986b) Formation and distribution of neural crest mesenchyme to the first pharyngeal arch region of the mouse embryo. Am J Anat 176:221–231

    Google Scholar 

  • Noden DM (1986) Origins and patterning of craniofacial mesenchymal tissues. J Craniofac Genet Dev Biol [Suppl] 2:15–31

    Google Scholar 

  • Noden DM, Evans HE (1986) Inherited homeotic midfacial malformatios in Burmese cats. J Craniofac Genet Dev Biol [Suppl] 2:249–266

    Google Scholar 

  • O'Rahilly R (1963) The early development of the otic vesicle in staged human embryos. J Embryol Exp Morphol 11:741–755

    Google Scholar 

  • O'Rahilly R, Gardner E (1979) The initial development of the human brain. Acta Anat 104:123–133

    Google Scholar 

  • O'Rahilly R, Müller F (1981) The first appearance of the human nervous system at stage 8. Anat Embryol 163:1–13

    Google Scholar 

  • O'Rahilly R, Müller F (1984) The early development of the hypoglossal nerve and occipital somites in staged human embryos. Am J Anat 169:237–257

    Google Scholar 

  • O'Rahilly R, Müller F (1986) The origin of the ectodermal ring in staged human embryos of the first 5 weeks. Acta Anat 122:145–157

    Google Scholar 

  • O'Rahilly R, Müller F (1986) The meninges in human development. J Neuropathol Exp Neurol 45:588–608

    Google Scholar 

  • O'Rahilly R, Müller F (1987a) Der Vesal der Embryologie des Menschen. Anat Anz, in press

  • O'Rahilly R, Müller F (1987b) Developmental stages in human embryos, including a revision of Streeter's “Horizons” and a survey of the Carnegie collection. Carnegie Inst Wash Publ 637, in press

  • Politzer G (1951) Die Ursachen der abwegigen Entwicklung des Schwanzmarkes beim Menschen. Roux' Arch Entw Mech 145:293–317

    Google Scholar 

  • Reiter A (1944) Die Frühentwicklung der menschlichen Wirbelsäule. II. Mitteilung: Die Entwicklung der Occipitalsegmente und der Halswirbelsäule. Z Anat Entw 113:66–104

    Google Scholar 

  • Rosenbauer KA (1955) Untersuchung eines menschlichen Embryos mit 24 Somiten, unter besonderer Berücksichtigung des Blutgefäßsystems. Z Anat Entw 118:236–276

    Google Scholar 

  • Schoenwolf GC (1984) Histological and ultrastructural studies of secondary neurulation in mouse embryos. Am J Anat 169:361–376

    Google Scholar 

  • Sternberg H (1927) Beiträge, zur Kenntnis des vorderen Neuroporus beim Menschen. Z Anat Entw 82:747–780

    Google Scholar 

  • Streeter GL (1942) Developmental horizons in human embryos. Description of age group XI, 13 to 20 somites, and age group XII, 21 to 29 somites. Contrib Embryol Carnegie Instn 30:211–245

    Google Scholar 

  • Streeter GL (1945) Developmental horizons in human embryos. Description of age group XIII, embryos about 4 or 5 millimeters long, and age group XIV, period of indentation of the lens vesicle. Contrib Embryol Carnegie Instn 31:27–63

    Google Scholar 

  • Tam PPL (1984) The histogenetic capacity of tissues at the caudal end of the embryonic axis in the mouse. J Embryol Exp Morphol 82:253–266

    Google Scholar 

  • Theiler K (1949) Studien zur Entwicklung der Ganglenleiste. II. Teil. Befunde zur Frühentwicklung der Ganglienleiste beim Menschen. Acta Anat 8:96–112

    Google Scholar 

  • Thiery JP, Duband JL, Delouvée A (1982) Pathways and mechanisms of avian trunk neural crest cell migration and localization. Dev Biol 93:324–343

    Google Scholar 

  • Thompson P (1907) Description of a human embryo of 23 paired somites. J Anat 41:159–171

    Google Scholar 

  • Töndury G (1944) Zur Kenntnis der Fehlbildungen mit Defekten des hinteren Körperendes. Arch J Klaus-Stiftung 19:225–264

    Google Scholar 

  • Tosney KW (1982) The segregation and early migration of cranial neural crest in the avian embryo. Dev Biol 89:13–24

    Google Scholar 

  • Van Campenhout E (1948) La contribution des placodes épiblastiques au développement des ganglions des nerfs crâniens chez l'embryon humain. Arch Biol (Liège) 59:253–266

    Google Scholar 

  • Wachtler F (1984) On the differentiation and migration of some non-neuronal neural crest derived cell types. Anat Embryol 170:161–168

    Google Scholar 

  • Wallace JA (1982) Monoamines in the early chick embryo: demonstration of serotonin synthesis and the regional distribution of serotonin-concentrating cells during morphogenesis. Am J Anat 165:261–276

    Google Scholar 

  • Wen IC (1928) The anatomy of human embryos with seventeen to twenty-three pairs of somites. J Comp Neurol 45:301–376

    Google Scholar 

  • Wentworth L (1984) The development of the cervical spinal cord of the mouse embryo. I. A Golgi analysis of ventral root neuron differentiation. J Comp Neurol 222:81–95

    Google Scholar 

  • West CM (1937) A human embryo of twenty-five somites. J Anat 71:169–201

    Google Scholar 

  • Windle WF (1970) Development of neural elements in human embryos of four to seven weeks'gestation. Exp Neurol [Suppl 5] 28:44–83

    Google Scholar 

  • Windle WF, Fitzgerald JE (1942) Development of the human mesencephalic root and related neurons. J Comp Neurol 74:287–307

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Supported by research grant No. HD-16702, Institute of Child Health and Human Development, National Institutes of Health (USA)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller, F., O'Rahilly, R. The development of the human brain, the closure of the caudal neuropore, and the beginning of secondary neurulation at stage 12. Anat Embryol 176, 413–430 (1987). https://doi.org/10.1007/BF00310083

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00310083

Key words

Navigation