Skip to main content
Log in

Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints

  • Articles
  • Published:
Skeletal Radiology Aims and scope Submit manuscript

Abstract

To estimate subchondral mineralisation patterns which represent the long-term loading history of individual joints, a method has been developed employing computed tomography (CT) which permits repeated examination of living joints. The method was tested on 5 knee, 3 sacroiliac, 3 ankle and 5 shoulder joints and then investigated with X-ray densitometry. A CT absorptiometric presentation and maps of the area distribution of the subchondral bone density areas were derived using an image analyser. Comparison of the results from both X-ray densitometry and CT-absorptiometry revealed almost identical pictures of distribution of the subchondral bone density. The method may be used to examine subchondral mineralisation as a measure of the mechanical adaptability of joints in the living subject.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Adams J, Chen S, Adams P, Isherwood I (1982) Measurement of trabecular bone mineral by dual energy computed tomography. J Comput Assist Tomogr 6:601

    Google Scholar 

  2. Amtmann E (1971) Mechanical stress, functional adaption and the variation-structure of the femur diaphysis. Ergebn. Anat. Entw.-gesch. Bd. 44, Heft 3, Springer, Berlin Heidelberg New York

    Google Scholar 

  3. Genant HK, Boyd D (1977) Quantitative bone mineral analysis using dual energy computed tomography. Invest Radiol 12:545

    Google Scholar 

  4. Kalender WA, Perman WH, Vetter JR, Klotz E (1986) Evaluation of a prototype dual-energy computed tomographic apparatus. I. Phantom studies. Med Phys 13:334

    Google Scholar 

  5. Knief J-J (1967) Materialverteilung und Beanspruchungsverteilung im coxalen Femurende — Densitometrische und spannungsoptische Untersuchungen. Z Anat EntwGesch 126:81

    Google Scholar 

  6. Konermann H (1971) Quantitative Bestimmung der Materialverteilung nach Röntgenbildern des Knochens mit einer neuen photographischen Methode. Z Anat EntwGesch 134:13

    Google Scholar 

  7. Kouris K, Spyrou NM, Jackson DF (1982) Imaging with ionizing radiations, 1st edn. Surrey University Press, Glasgow London

    Google Scholar 

  8. Kummer B (1968) Die Beanspruchung des menschlichen Hüftgelenks. I. Allgemeine Problematik. Z Anat Entw-Gesch 127:277

    Google Scholar 

  9. Kummer B (1972) Biomechanics of bone: Mechanical properties, functional structure, functional adaptation. In: Fung YC, Perrone N, Anliker M (eds) Biomechanics: Its foundations and objectives. Prentice Hall, Englewood Cliffs, p 237

    Google Scholar 

  10. Maquet P, Van de Berg A, Simonet J (1975) Femoro-tibial weight-bearing areas. J Bone Joint Surg [Am] 57:766

    Google Scholar 

  11. Meema HE, Harris CK, Porett RE (1964) A method for determination of bone-salt content of cortical bone. Radiology 82:986

    Google Scholar 

  12. Möllers N, Lehmann K, Koebke J (1986) Die Verteilung des subchondralen Knochenmaterials an der distalen Gelenkfläche des Radius. Anat Anz 161:151

    Google Scholar 

  13. Molzberger H (1973) Die Beanspruchung des menschlichen Hüftgelenks. IV. Analyse der funktionellen Struktur der Tangentialfaserschicht des Hüftpfannenknorpels. Z Anat EntwGesch 139:283

    Google Scholar 

  14. Murphy SB, Walker PS, Schiller AL (1984) Adaptive changes in the femur after implantation of an Austin Moore prothesis. J Bone Joint Surg [Am] 66:437

    Google Scholar 

  15. Noble J, Alexander K (1985) Studies of tibial subchondral bone density and its significance. J Bone Joint Surg [Am] 67:295

    Google Scholar 

  16. Odgaard A, Pedersen CM, Bentzen SM, Jorgensen, Hvid I (1988) Density changes at the proximal tibia after medial meniscectomy. 6th Meeting of the European Society of Biomechanics, Bristol

  17. Pauwels F (1980) Biomechanics of the locomotor apparatus. Springer, Berlin

    Google Scholar 

  18. Rao GU, Yaghmai I, Wist AO, Arora G (1987) Systematic errors in bone-mineral measurements by quantitative computed tomography. Med Phys 14:62

    Google Scholar 

  19. Schlegel W, Deutsches Krebsforschungszentrum Heidelberg (Personal communication)

  20. Schleicher A, Tillmann B, Zilles K (1980) Quantiative analysis of x-ray images with a television image analyser. Microscopia Acta 83:189

    Google Scholar 

  21. Steiger P, Rüegsegger P, Felder M (1985) Three-dimensional evaluation of bone changes in joints of patients who have rheumatoid arthritis. J Comput Assist Tomogr 9:622

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Müller-Gerbl, M., Putz, R., Hodapp, N. et al. Computed tomography-osteoabsorptiometry for assessing the density distribution of subchondral bone as a measure of long-term mechanical adaptation in individual joints. Skeletal Radiol 18, 507–512 (1989). https://doi.org/10.1007/BF00351749

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00351749

Key words

Navigation