Skip to main content
Log in

Tumor angiogenesis: A physiological process or genetically determined?

  • Tumor Angiogenesis
  • Published:
Cancer and Metastasis Reviews Aims and scope Submit manuscript

Abstract

Continued tumor growth is dependent upon the growth of new blood vessels. This commentary reviews the mechanisms whereby tumors become vascularized and examines whether tumor angiogenesis is solely an example of a normal physiologic process or is part of the genetic program of the tumor. The likelihood that neovascularization of tumors combines both of these components, that is, utilizing tumor-specific elements as well as capacities common to all cells, is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Folkman J: Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175: 409–416, 1972

    Google Scholar 

  2. Kim KJ, Li B, Winer J, Armanini M, Gillett N, Phillips HS, Ferrara N: Inhibition of vascular endothelial growth factor-induced angiogenesis suppresses tumor growth in vivo Nature 362: 841–844, 1993

    Google Scholar 

  3. Millauer B, Shawver LK, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367: 576–579, 1994

    Google Scholar 

  4. Warren RS, Yuan H, Matli MR, Gillett N, Ferrara N: Regulation by vascular endothelial growth factor of human colon cancer tumorigenesis in a mouse model of experimental liver metastasis. J Clin Invest 95: 1789–1797, 1995

    Google Scholar 

  5. Stone J, Itin A, Alon T, Pe'er J, Gnessin H, Chan-Ling T, Keshet E: Development of retinal vasculature is mediated by hypoxia-induced vascular endothelial growth factor (VEGF) expression by neuroglia. J Neurosci 15: 4738–4747, 1995

    Google Scholar 

  6. Hudlicka O: Development and adaptability of microvasculature in skeletal muscle. J Exp Biol 115: 215–228, 1985

    Google Scholar 

  7. Hudlicka O, Brown M, Egginton S: Angiogenesis in skeletal and cardiac muscle. Physiol Rev 72: 369–417, 1992

    Google Scholar 

  8. Shweiki D, Itin A, Soffer D, Keshet E: Vascular endothelial growth factor induced by hypoxia may mediate hypoxia-initiated angiogenesis. Nature 359: 843–845, 1992

    Google Scholar 

  9. Shima DT, Adamis AP, Yeo K-T, Yeo T-K, Allende R, Folkman J, D'Amore PA: Hypoxic induction of endothelial cell growth factors in retinal cells: identification and characterization of vascular endothelial growth factor (VEGF) as the mitogen. Mol Med 1: 182–193, 1995

    Google Scholar 

  10. Plate KH, Breier G, Weich HA, Risau W: Vascular endothelial growth factor is a potential tumour angiogenesis factor in human gliomas in vivo. Nature 359: 845–848, 1992

    Google Scholar 

  11. Shweiki D, Neeman M, Itin A, Keshet E: Induction of vascular endothelial growth factor expression by hypoxia and by glucose deficiency in multicell spheroids: implication for tumor angiogenesis. Proc Natl Acad Sci USA 92: 768–772, 1995

    Google Scholar 

  12. Dvorak H, Brown L, Detmar M, Dvorak A: Vascular permeability factor/vascular endothelial growth factor, microvascular hyperpermeability, and angiogenesis. Am J Path 146: 1029–1038, 1995

    Google Scholar 

  13. Pierce EA, Avery RL, Foley ED, Aiello LP, Smith LEH: Vascular endothelial growth factor/vascular permeability factor expression in a mouse model of retinal neovascularization. Proc Natl Acad Sci USA 92: 905–909, 1995

    Google Scholar 

  14. Adarnis AP, Shima DT, Tolentino MJ, Gragoudas ES, Ferrara N, Folkman J, D'Amore PA, Miller JW: Inhibition of VEGF prevents ocular neovascularization in a primate. Arch Ophthalmol 114: 66–71, 1996

    Google Scholar 

  15. Miller JW, Adamis AP, Shima DT, D'Amore PA, Moulton RS, O'Reilly MS, et al.: Vascular permeability factor/vascular endothelial cell growth factor is temporally and spatially correlated with ocular angiogenesis in a primate model. Am J Pathol 145: 574–584, 1994

    Google Scholar 

  16. D'Amore PA: Mechanisms of endothelial growth control. Am J Respir Cell Mol Biol 6: 1–8, 1992

    Google Scholar 

  17. Folkman J: Angiogenesis inhibitors generated by tumors. Mol Med 1: 120–122, 1996

    Google Scholar 

  18. Christofori G, Hanahan D: Molecular dissection of multistage tumorigenesis in transgenic mice. Semin Cancer Biol 5: 3–21, 1994

    Google Scholar 

  19. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D: Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66: 1095–1104, 1991

    Google Scholar 

  20. Dietrich WF, Radany EH, Smith JS, Bishop JM, Hanahan D, Lander ES: Genome-wide search for loss of heterozygosity in transgenic mouse tumors reveals candidate tumor suppressor genes on chromosomes 9 and 16. Proc Natl Acad Sci USA 91: 9451–9455, 1994

    Google Scholar 

  21. Rastinejad F, Polverini PJ, Bouck NP: Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56: 345–355, 1989

    Google Scholar 

  22. Good DJ, Polverini PJ, Rastinejad F, Le Beau MM, Lemons RS, Frazier WA, Bouck NP: A tumor suppressor dependent inhibitor of angiogenesis is immunologically and functionally indistinguishable from a fragment of thrombospondin. Proc Natl Acad Sci USA 87: 6624–6628, 1990

    Google Scholar 

  23. Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265: 1582–1584, 1994

    Google Scholar 

  24. RayChaudhury A, Frazier WA, D'Amore PA: Comparison of normal and tumorigenic endothelial cells: differences in thrombospondin production and responses to transforming growth factor-beta. J Cell Sci 107: 39–46, 1994

    Google Scholar 

  25. Sheibani N, Frazier WA: Thrombospondin 1 expression in transformed endothelial cells restores a normal phenotype and suppresses their tumorigenesis. Proc Natl Acad Sci USA 92: 6788–6792, 1995

    Google Scholar 

  26. Rak J, Filmus J, Finkenzeller G, Grugel S, Marme D, Kerbel RS: Oncogenes as inducers of tumor angiogenesis. Cancer Met Rev 14: 263–277, 1995

    Google Scholar 

  27. Grugel S, Finkenzeller G, Weindel K, Barleon B, Marme D: Both v-Ha-ras and v-raf stimulate expression of the vascular endothelial growth factor in NIH 3T3 cell. J Biol Chem 270: 25915–25919, 1995

    Google Scholar 

  28. Rak J, Bayko L, Filmus J, Shirasawa S, Kerber RS: Mutant ras oncogenes upregulate VEGF/VPF expression: implications for induction and inhibition of tumor angiogenesis. Cancer Res 55: 4575–4580, 1995

    Google Scholar 

  29. Claffey KP, Brown LF, del Aguila LF, Tognazzi K, Yeo K-T, Manseau EL, Dvorak HF: Expression of vascular permeability factor/vascular endothelial growth factor by melanoma cells increases tumor growth, angiogenesis, and experimental metastasis. Cancer Res 56: 172–196, 1996

    Google Scholar 

  30. Holmgren L, O'Reilly MS, Folkman J: Dormancy of micrometastases: balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Med 1: 149–153, 1995

    Google Scholar 

  31. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other diseases. Nature Med 1: 27–31, 1995

    Google Scholar 

  32. Antonelli-Orlidge A, Saunders KB, Smith SR, D'Amore PA: An activated form of TGF-β is produced by cocultures of endothelial cells and pericytes. Proc Natl Acad Sci USA 86: 4544–4548, 1989

    Google Scholar 

  33. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, et al.: Angiostatin: a novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 315–328, 1994

  34. Lu C, Kerbel RS: Cytokines, growth factors and the loss of negative growth control in the progression of human cutaneous malignant melanoma. Curr Opin Oncol 6: 212–220, 1994

    Google Scholar 

  35. Graeber TG, Osmanian C, Jacks T, Housman DE, Koch CJ, Lowe SW, Giacca AJ: Hypoxia-mediated selection of cells with diminished apoptotic potential in solid tumors. Nature 379: 88–90, 1996

    Google Scholar 

  36. Kinzler KW, Vogelstein B: Life (and death) in a malignant tumor. Nature 73: 19–20, 1996

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

D'Amore, P.A., Shima, D.T. Tumor angiogenesis: A physiological process or genetically determined?. Cancer Metast Rev 15, 205–212 (1996). https://doi.org/10.1007/BF00437473

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00437473

Key words

Navigation