Skip to main content
Log in

Comparison of transcellular and transepithelial water osmotic permeabilities (P os) in the isolated proximal straight tubule (PST) of the rabbit kidney

  • Transport Processes, Metabolism and Endocrinology; Kidney, Gastrointestinal Tract, and Exocrine Glands
  • Published:
Pflügers Archiv Aims and scope Submit manuscript

Abstract

Measurements of the water osmotic permeabilities of apical and basolateral membranes of PST cells and of the transepithelial permeability have been carried out using a very fast method with high temporal and spatial resolution. At 25°C the values obtained are: 80.8±11.9×10−4 cm3/s osmol cm2 of apical (luminal) surface area and 90.1 ±13.0×10−4 cm3/s osmol cm2 of basement membrane area (no membrane invaginations taken in account). These values are higher than previously published values due to the use of a faster and more accurate volume measuring and recording system. The transepithelial water osmotic permeability at 25°C is 77±11 in units of 10−4 cm3/s osmol cm2 basement membrane area. The transcellular water osmotic permeability is 32±7 (same units), leaving a paracellular contribution of 45±10 (same units). In the presence of 2.5 mM parachloromercuribenzenesulfonate (pCMBS) the apical permeability is reduced with an incubation of 10–15 min to 23% of its control value and the basolateral permeability to 8% of its control value (after 25 min) but the transepithelial permeability is only reduced to about 1/2 of the control value. This leaves a transcellular permeability of 6×10−4 cm3/s osmol cm2 of basement membrane area and a paracellular contribution of 33±6 (same units). These results indicate a significant contribution of the paracellular pathway to the transepithelial water osmotic permeabilities in PST.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Andreoli TE, Schafer JA (1979) Effective luminal hypotonicity: the driving force for isosmotic proximal tubular fluid absorption. Am J Physiol 236:F89-F99

    Google Scholar 

  • Barfuss DW, Schafer JA (1984) Hyperosmolarity of absorbate from isolated rabbit proximal tubules. Am J Physiol 247:F130-F139

    Google Scholar 

  • Berry CA (1983) Water permeability and pathways in the proximal tubule. Am J Physiol 245:F279-F294

    Google Scholar 

  • Berry CA (1985) Characteristics of water diffusion in the rabbit proximal convoluted tubule. Am J Physiol 249:F729-F738

    Google Scholar 

  • Bomsztyk K, Wright FS (1986) Dependence of ion fluxes on fluid transport by rat proximal tubule. Am J Physiol 250:F680-F689

    Google Scholar 

  • Carpi-Medina P (1986) Estudios sobre las permeabilidades difusivas y osmoticas del tubulo proximal del riñon de conejo. Thesis, Ph. Sc. IVIC. Caracas, Venezuela

  • Carpi-Medina P, Gonzalez E, Whittembury G (1983) Cell osmotic water permeability of isolated rabbit proximal convoluted tubules. Am J Physiol 244:F554-F563

    Google Scholar 

  • Carpi-Medina P, Lindemann B, Gonzalez E, Whittembury G (1984) The continuous measurement of tubular volume changes in response to step changes in contraluminal osmolarity. Pflügers Arch 400:343–348

    Google Scholar 

  • Carpi-Medina P, Leon V, Espidel J, Whittembury G (1988) Diffusive water permeability,P d, in isolated kidney proximal tubular cells. J Membr Biol (in press)

  • Corman B, DiStefano A (1983) Does water drag solutes through kidney proximal tubule? Pflügers Arch 397:35–41

    Google Scholar 

  • Frömter E (1972) The route of passive ion movement through the epithelium of Necturus gallbladder. J Membr Biol 8:259–301

    Google Scholar 

  • Frömter E, Rumrich G, Ullrich KJ (1973) Phenomenological description of Na+, Cl and HCO3 absorption from proximal tubules of the rat kidney. Pflügers Arch 343:189–220

    Google Scholar 

  • Gertz KH (1963) Transtubuläre Natriumchloridflüsse und Permeabilität für Nichtelektrolyte im proximalen und distalen Konvolut der Rattenniere. Pflügers Arch 276:336–356

    Google Scholar 

  • Gonzalez E, Carpi-Medina P, Whittembury G (1982) Cell osmotic water permeability of isolated rabbit proximal straight tubules. Am J Physiol 242:F321-F330

    Google Scholar 

  • Gonzalez E, Carpi-Medina P, Linares H, Whittembury G (1984) Water osmotic permeability of the apical membrane of proximal straight tubular (PST) cells. Pflügers Arch 402:337–339

    Google Scholar 

  • Green R, Giebisch G (1984) Luminal hypotonicity: a driving force for fluid absorption from the proximal tubule. Am J Physiol 246:F167-F174

    Google Scholar 

  • Györy AZ (1972) Sources of error and limitations in the use oft 1/2 as a measure of tubular reabsorptive capacity. Yale J Biol Med 45:269–274

    Google Scholar 

  • Hill AE, Hill BS (1978) Sucrose fluxes and junctional water flow across Necturus gallbladder epithelium. Proc Roy Soc B 200:151–162

    Google Scholar 

  • Hoshi T, Sakai F, Haga M (1962) Electrical properties of renal tubules of the newt. Nippon Seirigaku Zasshi 24:378–389

    Google Scholar 

  • Jacobs MH (1935) Diffusion processes. Ergebnisse Biol 12:1–60

    Google Scholar 

  • Kaissling B, Kraz W (1985) Structure-function correlation in transporting epithelia. In: Seldin D, Giebisch, G (eds) Kidney: Physiology and pathophysiology. Raven Press, New York, pp 307–315

    Google Scholar 

  • Kedem O, Katchalsky A (1963a) Permeability of composite membranes. Part 2. Parallel elements. Trans Faraday Soc 59:1931–1940

    Google Scholar 

  • Kadem O, Katchalsky A (1963b) Permeability of composite membranes. Part 3. Series array of elements. Trans Faraday Soc 59:1941–1953

    Google Scholar 

  • Lindemann B (1984) Real-time area-tracker records cellular volume changes from video images. Rev Sci Instr 55:1788–1790

    Google Scholar 

  • Moura TF, Macey RI, Chien DY, Karan D, Santos H (1984) Thermodynamics of all-or-none water channel closure in red cells. J Membr Biol 81:105–111

    Google Scholar 

  • Pedley TJ (1983) Calculation of unstirred layer thickness in membrane transport experiments: a survey. Q Rev Biophys 16:115–150

    Google Scholar 

  • Pedley TJ, Fischbarg J (1978) The development of osmotic flow through an unstirred layer. J Theor Biol 70:427–447

    Google Scholar 

  • Preisig PA, Berry CA (1985) Evidence for transcellular osmotic water flow in rat proximal tubules. Am J Physiol 249:F124-F131

    Google Scholar 

  • Schafer JA (1984) Mechanisms coupling the absorption of solutes and water in the proximal tubule. Kidney Int 25:708–716

    Google Scholar 

  • Schafer JA, Patlack CS, Troutman SI, Andreoli TE (1978) Volume absorption in the pars recta. II. Hydraulic conductivity coefficient. Am J Physiol 234:F340-F348

    Google Scholar 

  • Terwilliger TC, Solomon AK (1981) Osmotic water permeability of human red cells. J Gen Physiol 77:549–570

    Google Scholar 

  • Tisher CC, Kokko JP (1974) Relationship between peritubular osmotic pressure gradients and morphology in isolated proximal tubules. Kidney Int 6:146–156

    Google Scholar 

  • Ullrich KJ (1973) Permeability characteristics of the mammalian nephron. In: Orloff J, Berliner RW (eds) Handbook of physiolog, vol 8. American Physiological Society, Washington, pp 377–414

    Google Scholar 

  • Weinstein AM (1987) Convective paracellular solute flux. A source of ion-ion interaction in the epithelial transport equations. J Gen Physiol 89:501–518

    Google Scholar 

  • Welling LW, Grantham JJ (1972) Physical properties of isolated perfused renal tubules and tubular basement membranes. J Clin Invest 51:1063–1075

    Google Scholar 

  • Welling LW, Welling DJ (1975) The surface areas of brush borders and lateral cell walls in the rabbit proximal tubule. Kidney Int 8:343–348

    Google Scholar 

  • Whittembury G (1967) Sobre los mecanismos de absorcion en el tubulo proximal del riñon. Acta Cient Venez 18 (Suppl 3): 71–83

    Google Scholar 

  • Whittembury G, Rawlins F (1971) Evidence for a paracellular pathway for ion flow in the kidney proximal tubule: electronmicroscopic demonstration of Lanthanum precipitate in the tight junctions. Pflügers Arch 330:302–309

    Google Scholar 

  • Whittembury G, Verde-Martinez C, Linares H, Paz-Aliaga A (1980) Solvent drag of large solutes indicates paracellular water flow in leaky epithelia. Proc Roy Soc B 211:63–81

    Google Scholar 

  • Whittembury G, Carpi-Medina P, Gonzalez E, Linares H (1984) Effect of parachloromercuribenzenesulfonic acid and temperature on cell water osmotic permeability of proximal straight tubules. Biochim Biophys Acta 775:365–373

    Google Scholar 

  • Whittembury G, Paz-Aliaga A, Biondi A, Carpi-Medina P, Gonzalez E, Linares H (1985) Pathways for volume flow and volume regulation in leaky epithelia. Pflügers Arch 405:S17-S22

    Google Scholar 

  • Whittembury G, Biondi A, Paz-Aliaga A, Linares H, Parthe V, Linares N (1986) Transcellular and paracellular flow of water during secretion in the upper segment of the Malpighian tubule of Rhodnius prolixus: solvent drag of graded sized molecules. J Exp Biol 123:71–92

    Google Scholar 

  • Whittembury G, Lindemann B, Carpi-Medina P Gonzalez E, Linares H (1986) Continuous measurements of cell volume changes in single kidney tubules. Kidney Int 30:187–191

    Google Scholar 

  • Windhager EE, Boulpaep EL, Giebisch G (1967) Electrophysiological studies in single nephrons. Proceedings III Int Congress Nephrol. Karger, Basel, pp 35–47

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Carpi-Medina, P., Whittembury, G. Comparison of transcellular and transepithelial water osmotic permeabilities (P os) in the isolated proximal straight tubule (PST) of the rabbit kidney. Pflugers Arch. 412, 66–74 (1988). https://doi.org/10.1007/BF00583732

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00583732

Key words

Navigation