Skip to main content
Log in

Mapping of normal brain maturation in infants on phase-sensitive inversion-recovery MR images

  • Originals
  • Published:
Neuroradiology Aims and scope Submit manuscript

Summary

It is illustrated that phase-sensitive inversion-recovery MR images are particularly well suited for the monitoring of brain maturation and myelination in the neonate and young infant. Provided appropriate timings are applied with the inversion-recovery MR pulse sequence, the myelinated areas show up as bright spots in the phase-sensitive images. The chronology of the appearance, and the location of these hyperintense zones correlate well with the chronology of brain maturation, as assessed by other means. In particular, the progressive functional capabilities of the infant correlate well with the progress of myelination, as exhibited by the MR images.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Dobbing J, Sands J (1973) Quantitative growth and development of human brain. Arch Dis Child 48:757–767

    Google Scholar 

  2. Fishmann MA, Agrawal HC, Alexander A, Golterman J (1975) Biochemical maturation of human central nervous system myelin. J Neurochem 24:689–694

    Google Scholar 

  3. Folch-Pi J (1955) Composition of the brain in relation to maturation. In: Waelsch H (ed) Biochemistry of the developing nervous system. Academic Press, New York, pp 121–136

    Google Scholar 

  4. Brante G (1949) Studies on lipids in the nervous system. Distribution of lipids in “grey” and “white” matter from different parts of adult human and animal nervous system. Acta Physiol Scand 18 [Suppl 63]:104–147

    Google Scholar 

  5. Holland BA, Kaas DK, Norman D, Brant-Zawadzki M, Newtwon TH (1986) MRI of normal brain maturation. AJNR 7:201–208

    Google Scholar 

  6. McArdle CB, Richardson CJ, Nicholas DA, Mirfakhraee M, Hayden CK, Amparo EG (1987) Developmental features of the neonatal brain: MR imaging. Part I. Gray-white matter differentiation and myelination. Radiology 162:223–229

    Google Scholar 

  7. McArdle CB, Richardson CJ, Nicholas DA, Mirfakjraee M, Hayden CK, Amparo EG (1987) Development features of the neonatal brain: MR imaging. Part II. Ventricular size and extracerebral space. Radiology 162:230–234

    Google Scholar 

  8. Nowell MA, Hackney DB, Zimmerman RA, Bilaniuk LT, Grossman RI, Goldberg HI (1987) Immature brain: spin echo pulse sequence parameters for high contrast MR imaging. Radiology 162:272–273

    Google Scholar 

  9. Martin E, Zuerer M, Boesch C, Briner J, Kewitz G, Kaelin P (1988) Developmental stages of human brain: An MR study. J Comput Assist Tomogr 12:917–922

    Google Scholar 

  10. Christophe C, Balériaux D, Kahn A, Muller MF, Perlmutter N, Segebarth C (1988) MRI monitoring of normal brain maturation at 0.5 Tesla. Magn Reson Med Biol 1:127–136

    Google Scholar 

  11. Barkovich AJ, Kjos BO, Jackson DE, Norman D (1988) Normal maturation of the neonatal and infant brain: MR imaging at 1.5 Tesla. Radiology 166:173–180

    Google Scholar 

  12. Bird CR, Hedberg M, Drayer BP, Keller PJ, Flom RA, Hodak JA (1989) MR assessment of myelination in infants and children: usefulness of marker sites. AJNR 10:731–740

    Google Scholar 

  13. Levene MI, Whitelaw A, Dubowitz V, Bydder GM, Steiner RE, Randell CP, Young IR (1982) Br Med J 285:774–776

    Google Scholar 

  14. Johnson MA, Bydder GM (1983) NMR imaging in the brain of children. Med Bull 40:175–178

    Google Scholar 

  15. Johnson MA, Pennock JM, Bydder GM, Steiner RE, Thomas DJ, Hayward R, Bryant DRT, Payne JA, Levene MI, Whitelaw A, Dubowitz LMS, Dubowitz V (1983) Clinical NMR imaging of the brain in children: normal and neurologic disease. AJR 141: 1005–1018

    Google Scholar 

  16. Lee BC, Lipper E, Nass R, Ehrlich ME, de Ciccio-Bloom E, Auld PA (1986) MRI of the central nervous system in neonates and young children. AJNR 7:605–616

    Google Scholar 

  17. Baierl P, Förster C, Fendel H, Naegele M, Fink U, Kenn W (1988) Magnetic resonance imaging of normal and pathological white matter maturation. Pediatr Radiol 18:183–199

    Google Scholar 

  18. Dietrich RB, Bradley WG, Zaragoza IV EJ, Otto RJ, Taira RK, Wilson GH, Kangarloo H (1988) MR evaluation of early myelination patterns in normal and developmentally delayed infants. AJNR 9:69–76

    Google Scholar 

  19. Johnson MA, Pennock JM, Bydder GM, Dubowitz LMS, Thomas DJ, Young IR (1987) Serial MR imaging in neonatal cerebral injury. AJNR 8:83–92

    Google Scholar 

  20. McArdle CB, Richardson CJ, Hayden CK, Nicholas DA, Amparo EG (1987) Abnormalities of the neonatal brain: MR imaging. Part II. Hypoxic-ischemic brain injury. Radiology 163:395–403

    Google Scholar 

  21. McArdle CB, Richardson CJ, Hayden CK, Nicholas DA, Crofford MJ, Amparo EG (1987) Abnormalities of the neonatal brain: MR imaging. Part I. Intracranial hemorrhage. Radiology 163:387–394

    Google Scholar 

  22. Moor JB, Parker CP, Smith RJ, Goethe BD (1987) Concealment of neonatal cerebral infarction on MRI by normal brain water. Pediatr Radiol 17:314–315

    Google Scholar 

  23. Baker LL, Stevenson DK, Enzmann DR (1988) End-stage periventricular leukomalacia: MR evaluation. Radiology 168: 809–815

    Google Scholar 

  24. Dietrich RB, Bradley WG (1988) Iron accumulation in the basal ganglia following severe ischemic-anoxic insults in children. Radiology 168:203–206

    Google Scholar 

  25. Press GA, Barshop BA, Haas RH, Nyhan WL, Glass RF, Hesselink JR (1989) Abnormalities of the brain in nonketotic hyperglycinemia: MR manifestations. AJNR 10:315–321

    Google Scholar 

  26. Flodmark O, Lupton B, Li D, Stimac GK, Roland EH, Hill A, Whitfield MF, Norman MG (1989) MR imaging of periventricular leukomalacia in childhood. AJNR 10:111–118

    Google Scholar 

  27. Wilson DA, Steiner RE (1986) Periventricular leukomalacia: evaluation with MR imaging. Radiology 160:507–511

    Google Scholar 

  28. Stomp GP, in den Kleef JJE (1987) In: Book of abstracts of the VI European Congress of Radiology, Lisbon, Portugal, May 31–June 6, 1987, p 97

  29. Dekaban A (1970) Neurology of early childhood. Williams and Wilkins, Baltimore, pp 1–49

    Google Scholar 

  30. Mansfield P, Morris PG (1982) NMR imaging in biomedicine. Academic Press, New York, pp 10–30

    Google Scholar 

  31. Altman PL, Dittmer D (1973) Chemical composition of nervous tissue. In: Biology data book, 2nd edn, vol II (145). Federation of American Societies for Experimental Biology, Bethesda, pp 1206–1211

    Google Scholar 

  32. Samorajski T, Rolsten C (1973) Age and regional differences in the chemical composition of brains of mice, monkeys and humans. In: Ford DH (ed) Progress in brain research, vol 40. Elsevier, Amsterdam, pp 253–265

    Google Scholar 

  33. Segebarth CM, Balériaux DF, Luyten PR, den Hollander JA (1989) Detection of metabolic heterogeneity of human intracranial tumors in vivo by 1H NMR spectroscopic imaging. Magn Reson Med 12

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Christophe, C., Muller, M.F., Balériaux, D. et al. Mapping of normal brain maturation in infants on phase-sensitive inversion-recovery MR images. Neuroradiology 32, 173–178 (1990). https://doi.org/10.1007/BF00589106

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00589106

Key words

Navigation