Skip to main content
Log in

The influence of angiogenesis research on management of patients with breast cancer

  • Published:
Breast Cancer Research and Treatment Aims and scope Submit manuscript

Summary

The diagnosis and treatment of patients with breast cancer is beginning to be influenced by new ideas and discoveries emerging from the field of angiogenesis research. This field, pursued in the laboratory for more than 20 years, has in the past 5 years generated clinical applications. Some of these applications have begun to change current thinking about cancer patients and especially about those with breast cancer. I here discuss how an understanding of the process of angiogenesis may contribute to improved management of patients with breast cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Coman DR, Sheldon WF: The significance of hyperemia around tumor implants. Am J Pathol 22:821–831, 1946.

    Google Scholar 

  2. Warren BA: The vascular morphology of tumors.In: Peterson H-I (ed) Tumor Blood Circulation: Angiogenesis, Vascular Morphology and Blood Flow of Experimental Tumors. CRC Press, Boca Raton FL, 1979, pp 1–47.

    Google Scholar 

  3. Day ED: Vascular relationships of tumor and host. Prog Exp Tumor Res 4:57–97, 1964.

    Google Scholar 

  4. Algire G, Chalkley HW, Legallais FY, Park H: Vascular reactions of normal and malignant tumors in vivo. I. Vascular reactions of mice to wounds and to normal and neoplastic transplants. J Natl Cancer Inst 6:73–85, 1945.

    Google Scholar 

  5. Folkman J, Long DM, Becker FF: Growth and metastasis of tumor in organ culture. Cancer 16:453–467, 1963.

    Google Scholar 

  6. Folkman J, Cole P, Zimmerman S: Tumor behavior in isolated perfused organs: in vitro growth and metastasis of biopsy material in rabbit thyroid and canine intestinal segment. Ann Surg 164:491–502, 1966.

    Google Scholar 

  7. Gimbrone M, Aster R, Cotran R, Corkery J, Jandl J, Folkman J: Preservation of vascular integrity in organs perfused in vitro with a platelet-rich medium. Nature 222:33–36, 1969.

    Google Scholar 

  8. Folkman J: Tumor angiogenesis: Therapeutic implications. N Engl J Med 285:1182–1186, 1971.

    Google Scholar 

  9. Gimbrone M, Leapman S, Cotran R, Folkman J: Tumor dormancy in vivo by prevention of neovascularization. J Exptl Med 136:261–276, 1972.

    Google Scholar 

  10. Folkman J, Merler E, Abernathy C, Williams G: Isolation of a tumor factor responsible for angiogenesis. J Exp Med 133:275–288, 1971.

    Google Scholar 

  11. Cavallo T, Sade R, Folkman J, Cotran RS: Tumor angiogenesis: rapid induction of endothelial mitoses demonstrated by autoradiography. J Cell Biol 54: 408–420, 1972.

    Google Scholar 

  12. Cavallo T, Sade RM, Folkman J, Cotran RS: Endothelial regeneration: ultrastructural and autoradiographic studies of the early proliferative response in tumor angiogenesis. Am J Pathol 70:345–362, 1973.

    Google Scholar 

  13. Folkman J: Anti-angiogenesis: new concept for therapy of solid tumors. Ann Surg 175:409–416, 1972.

    Google Scholar 

  14. Tuan D, Smith S, Folkman J, Merler E: Isolation of the non-histone proteins of rat Walker carcinoma and their association with tumor angiogenesis. Biochem 12:3159–3165, 1973.

    Google Scholar 

  15. Folkman J, Haudenschild CC, Zetter BR: Long-term culture of capillary endothelial cells. Proc Natl Acad Sci USA 76:5217–5221, 1979.

    Google Scholar 

  16. Folkman J, Haudenschild C: Angiogenesis in vitro. Nature 288:551–556, 1980.

    Google Scholar 

  17. Auerbach R, Kubai L, Knighton D, Folkman J: A simple procedure for the long-term cultivation of chicken embryo. Devel Biol 41:391–394, 1974.

    Google Scholar 

  18. Gimbrone MA Jr, Cotran RS, Leapman SB, Folkman J: Tumor growth and neovascularization: an experimental model using rabbit cornea. J Natl Cancer Inst 52:413–427, 1974.

    Google Scholar 

  19. Langer R, Folkman J: Polymers for the sustained release of proteins and other macromolecules. Nature 263:797–800, 1976.

    Google Scholar 

  20. Shing Y, Folkman J, Sullivan R, Butterfield C, Murray J, Klagsbrun M: Heparin affinity: purification of a tumor-derived capillary endothelial cell growth factor. Science 223:1296–1298, 1984.

    Google Scholar 

  21. Folkman J: Tumor angiogenesis.In: Mendelsohn J, Howley P, Liotta L, Israel M (eds) The Molecular Basis of Cancer. WB Saunders, Philadelphia, 1995, pp 206–232.

    Google Scholar 

  22. Jackson D, Volpert O, Bouck N, Linzer DIH: Stimulation of angiogenesis by placental proliferin and proliferin-related protein. Science 266:1581–1584, 1994.

    Google Scholar 

  23. Auerbach W, Auerbach R: Angiogenesis inhibition: a review. Pharmac Ther 63:265–311, 1994.

    Google Scholar 

  24. Folkman J: What is the evidence that tumors are angiogenesis dependent? J Natl Cancer Inst 82:4–6, 1990.

    Google Scholar 

  25. Rastinejad F, Polverini P, Bouck NP: Regulation of the activity of a new inhibitor of angiogenesis by a cancer suppressor gene. Cell 56:345–355, 1989.

    Google Scholar 

  26. Millauer B, Shawver LK, Plate KH, Risau W, Ullrich A: Glioblastoma growth inhibited in vivo by a dominant-negative Flk-1 mutant. Nature 367:576–579, 1994.

    Google Scholar 

  27. Dameron KM, Volpert OV, Tainsky MA, Bouck N: Control of angiogenesis in fibroblasts by p53 regulation of thrombospondin-1. Science 265:1582–1584, 1994.

    Google Scholar 

  28. Van Meir EG, Polverini PJ, Chazin VR, Huang H-JS, de Tribolet N, Cavenee WK: Release of an inhibitor of angiogenesis upon induction of wild type p53 expression in glioblastoma cells. Nature Genetics 8:171–178, 1994.

    Google Scholar 

  29. O'Reilly MS, Holmgren L, Shing Y, Chen C, Rosenthal RA, Moses M, Lane WS, Cao Y, Sage EH, Folkman J: Angiostatin: A novel angiogenesis inhibitor that mediates the suppression of metastases by a Lewis lung carcinoma. Cell 79:315–328, 1994.

    Google Scholar 

  30. Weinstat-Saslow DL, Zabrenetzky VS, VanHoutte K, Frazier WA, Roberts DD, Steeg PS: Transfection of thrombospondin-1 complementary DNA into a human breast carcinoma cell line reduces primary tumor growth, metastatic potential and angiogenesis. Cancer Res 54:6504–6511, 1994.

    Google Scholar 

  31. Brooks PC, Montgomery AMP, Rosenfeld M, Reisfeld RA, Hu T, Klier G, Cheresh DA: Integrin αvβ3 antagonists promote tumor regression by inducing apoptosis of angiogenic blood vessels. Cell 79: 1157–1164, 1994.

    Google Scholar 

  32. Folkman J: Tumor angiogenesis.In: Holland JF, Frei E, Bast RC, Kufe DW, Morton DL, Weichselbaum RR (eds) Cancer Medicine, 3rd Edition. Lea & Febiger, Melvern PA, 1993, pp 153–170.

    Google Scholar 

  33. Folkman J, Watson K, Ingber D, Hanahan D: Induction of angiogenesis during the transition from hyperplasia to neoplasia. Nature 339:58–61, 1989.

    Google Scholar 

  34. Kandel J, Bossy-Wetzel E, Radvanyi F, Klagsbrun M, Folkman J, Hanahan D: Neovascularization is associated with a switch to the export of bFGF in the multistep development of fibrosarcoma. Cell 66:1095–1104, 1991.

    Google Scholar 

  35. Smith-McCune KK, Weidner N: Demonstration and characterization of the angiogenic properties of cervical dysplasia. Cancer Res 54:800–804, 1994.

    Google Scholar 

  36. Weidner N: Intratumoral microvessel density as a prognostic factor in cancer. Am J Pathol 147:1–11, 1995.

    Google Scholar 

  37. Holmgren L, O'Reilly MS, Folkman J: Dormancy of micrometastases: Balanced proliferation and apoptosis in the presence of angiogenesis suppression. Nature Medicine 1(2):149–153, 1995.

    Google Scholar 

  38. Pepper MS, Ferrara N, Orci L, Montesano R: Potent synergism between vascular endothelial growth factor and basic fibroblast growth factor in the induction of angiogenesis in vitro. Biochem Biophys Res Commun 189:824–831, 1992.

    Google Scholar 

  39. Goto F, Goto K, Weindel K, Folkman J: Synergistic effects of vascular endothelial growth factor and basic fibroblast growth factor on the bovine capillary endothelial cells within collagen gels. Lab Invest 69:508–517, 1993.

    Google Scholar 

  40. Nguyen M, Watanabe H, Budson AE, Richie JP, Hayes DF, Folkman J: Elevated levels of an angiogenic peptide, basic fibroblast growth factor, in the urine of patients with a wide spectrum of cancers. J Natl Cancer Inst 86:356–361, 1994.

    Google Scholar 

  41. Folkman J, Ferrara N: Unpublished data.

  42. Thompson RW, Whalen GF, Saunders KB, Hores T, D'Amore PA: Heparin-mediated release of fibroblast growth factor-like activity into the circulation of rabbits. Growth Factors 3:221–229, 1990.

    Google Scholar 

  43. Ferrara N: Personal communication.

  44. Hamada J, Cavanaugh PG, Lotan O, Nicolson GL: Separable growth and migration factors for large-cell lymphoma cells secreted by microvascular endothelial cells derived from target organs for metastasis. Br J Cancer 66:349–354, 1992.

    Google Scholar 

  45. Rak JW, St Croix BD, Kerbel RS: Consequences of angiogenesis for tumor progression, metastasis and cancer therapy. Anti-Cancer Drugs 6:3–18, 1995.

    Google Scholar 

  46. Nicosia RF, Tchao R, Leighton J: Interactions between newly formed endothelial channels and carcinoma cells in plasma clot culture. Clin Exp Metastases 4:91–104, 1986.

    Google Scholar 

  47. Liotta LA, Kleinerman J, Saidel GM: Quantitative relationships of intravascular tumor cells, tumor vessels, and pulmonary metastases following tumor implantation. Cancer Res 34:997–1004, 1974.

    Google Scholar 

  48. Weidner N, Semple J, Welch W, Folkman J: Tumor angiogenesis correlates with metastasis in invasive breast carcinoma. N Engl J Med 324:1–8, 1991.

    Google Scholar 

  49. Bosari S, Lee AK, DeLellis RA, Wiley BD, Heatley GH, Silverman ML: Microvessel quantitation and prognosis in invasive breast carcinoma. Human Pathol 23:755–761, 1992.

    Google Scholar 

  50. Horak ER, Leek R, Klenk N, Lejeune S, Smith K, Stuart N, Greenall M, Stepniewska K, Harris AL: Angiogenesis, assessed by platelet/endothelial cell adhesion molecule antibodies, as indicator of node metastases and survival in breast cancer. Lancet 340: 1120–1124, 1992.

    Google Scholar 

  51. Weidner N, Folkman J, Pozza F, Bevilacqua P, Allred E, Moore DH, Meli S, Gasparini G: Tumor angiogenesis: a new significant and independent prognostic indicator in early-stage breast carcinoma. J Natl Cancer Inst 84:1875–1887, 1992.

    Google Scholar 

  52. Visscher DW, Smilanetz S, Drozdowicz S, Wykes SM: Prognostic significance of image morphometric microvessel enumeration in breast cancer. Anal Quant Cytol Histol 15:88–92, 1993.

    Google Scholar 

  53. Toi M, Kashitani J, Tominaga T: Tumor angiogenesis is an independent prognostic indicator of primary breast carcinoma. Int J Cancer 55:371–374, 1993.

    Google Scholar 

  54. Fox SB, Leek RD, Smith K, Hollyer J, Greenall M, Harris AL: Tumor angiogenesis in node-negative breast carcinomas — relationship with epidermal growth factor receptor, estrogen receptor, and survival. Breast Cancer Res Treat 29:109–116, 1994.

    Google Scholar 

  55. Gasparini G, Weidner N, Bevilacqua P, Maluta S, Dalla Palma P, Caffo O, Barbareschi M, Boracchi P, Marubini E, Pozza F: Tumor microvessel density, p53 expression, tumor size and peritumoral lymphatic invasion are relevant prognostic markers in node-negative breast carcinoma. J Clin Oncol 12:454–466, 1994.

    Google Scholar 

  56. Obermair A, Czerwenka K, Kurz C, Kaider A, Sevelda P: Blood vessel invasion in breast cancer. A comparison of haematoxylin-eosin staining and immunohistochemical staining for factor VIII antigen for their prognostic value concerning tumour recurrence. Dtsch Med Wschr 119:1491–1496, 1994.

    Google Scholar 

  57. Folkman J: Angiogenesis and breast cancer. J Clin Oncol 12:441–444, 1994.

    Google Scholar 

  58. Tedrow U, Weidner N, Rogers R, Folkman J: Unpublished data.

  59. Folkman J: Angiogenesis in cancer, vascular, rheumatoid and other disease. Nature Medicine 1: 27–31, 1995.

    Google Scholar 

  60. Meltzer A: Dormancy and breast cancer. J Surg Oncol 43:181–188, 1990.

    Google Scholar 

  61. Demicheli R, Terenziani M, Valagussa P, Moliterni A, Zambetti M, Bonadonna G: Local recurrences following mastectomy: support for the concept of tumor dormancy. J Natl Cancer Inst 86:45–48, 1994.

    Google Scholar 

  62. Wheelock EF, Weinholt KJ, Levich J: The tumor dormant state. Adv Cancer Res 34:107–140, 1981.

    Google Scholar 

  63. Woodruff M: Interaction of cancer and host. The Walter Hubert Lecture. Br J Cancer 46:313–322, 1982.

    Google Scholar 

  64. Fidler IJ: Cancer metastasis. Br Med Bull 47:157–177, 1991.

    Google Scholar 

  65. Prehn RT: The inhibition of tumor growth by tumor mass. Cancer Res 51:2–4, 1991.

    Google Scholar 

  66. Morrow M, Jordan VC: Risk factors and the prevention of breast cancer with tamoxifen. Cancer Surveys 18:211–229, 1993.

    Google Scholar 

  67. Murray C: Tumour dormancy: not so sleepy after all. Nature Medicine 2:117–118, 1995.

    Google Scholar 

  68. Dvorak H, Nagy J, Dvorak J, Dvorak A: Identification and characterization of the blood vessels of solid tumors that are leaky to circulating macromolecules. Am J Pathol 133:95–109, 1988.

    Google Scholar 

  69. Jain RK: Physiological barriers to delivery of monoclonal antibodies and other macromolecules in tumors. Cancer Res 59:S814-S819, 1990.

    Google Scholar 

  70. Teicher BA, Holden SA, Ara G, Alvarez Sotomayor E, Huang ZD, Chen Y-N, Brem H: Potentiation of cytotoxic cancer therapies by TNP-470 alone and with other anti-angiogenic agents. Int J Cancer 57:920–925, 1994.

    Google Scholar 

  71. Brem H, Goto F, Budson A, Saunders L, Folkman J: Minimal drug resistance after prolonged antiangiogenic therapy with AGM-1470. Surgical Forum 45:674–677, 1994.

    Google Scholar 

  72. Kerbel RS: Inhibition of tumor angiogenesis as a strategy to circumvent acquired resistance to anticancer therapeutic agents. BioEssays 13:31–36, 1991.

    Google Scholar 

  73. Teicher BA, Holden SA, Ara G, Northey D: Response of the Fsall fibrosarcoma to antiangiogenic modulators plus cytotoxic agents. Anticancer Res 13:2101–2106, 1993.

    Google Scholar 

  74. Yamamoto T, Sudo K, Fujita T: Significant inhibition of endothelial cell growth in tumor vasculature by an angiogenesis inhibitor, TNP-470 (AGM-1470). Anticancer Res 14:1–3, 1994.

    Google Scholar 

  75. Teicher BA, Dupuis N, Kusumoto T, Robinson MF, Leu F, Menon K, Coleman CN: Antiangiogenic agents can increase tumor oxygenation and response to radiation therapy. Rad Oncol Invest, in press, 1995.

  76. Guidi AJ, Fischer L, Harris JR, Schnitt SJ: Microvessel density and distribution in ductal carcinoma in situ of the breast. J Natl Cancer Inst 86:614–619, 1994.

    Google Scholar 

  77. Tamm I, Cardinale I, Krueger J, Murphy JS, May LT, Seghal PB: Interleukin 6 decreases cell-cell association and increases motility of ductal breast carcinoma cells. J Exp Med 170:1649–1669, 1989.

    Google Scholar 

  78. Burrow FJ, Thorpe PE: Eradication of large solid tumors in mice with immunotoxin directed against tumor vasculature. Proc Natl Acad Sci USA 90:8996–9000, 1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Folkman, J. The influence of angiogenesis research on management of patients with breast cancer. Breast Cancer Res Tr 36, 109–118 (1995). https://doi.org/10.1007/BF00666033

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00666033

Key words

Navigation