Skip to main content
Log in

Histochemical localization of aluminum in the rabbit CNS

  • Original Works
  • Published:
Acta Neuropathologica Aims and scope Submit manuscript

Summary

Aluminum was observed in the nucleolus, interchromatin granules, rough endoplasmic reticulum, free ribosomes, euchromatin, and the heterochromatin of the neuron. The association of aluminum with the first four r-RNA-containing cellular components and with the last two DNA-containing chromatins suggests the association of aluminum with the nucleic acids. The aluminum may interfere with the normal mechanism of the protein synthesis of r-RNA and of the transcription or gene modulation of DNA. Aluminum was also observed in the astrocytic process and in the nuclei of endothelial cells, pericytes, and the muscle cells of the blood vessels. The detection of aluminum in the pyrimidal cells of the cerebral cortex and hippocampus and in the spinal cord neurons, was observed 1 h after i. v. injection, indicating a rapid entry of aluminum from the injection site through the blood-brain barrier (BBB) to the neurons. Using Morin stain, pyramidal neurons of the cerebral cortex and hippocampus, motoneurons of spinal cord, ganglion cells, and bipolar cells of retina and Purkinje cells of cerebellum, exhibited yellow fluoroscence, with peak intensitiy at 560 nm. Tangles were observed in these six types of neurons. The granule cells of hippocampus and cerebellum and the photoreceptors of the retina exhibited green fluorescence with the peak intensity at 490–500 nm. Tangles were not observed in these three types of neurons.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alfrey AC, LeGendre GR, Kaehny WD (1976) The dialysis encephalopathy syndrome. New Engl J Med 294:184–188

    Google Scholar 

  • Alfrey AC (1978) Dialysis encephalopathy syndrome. Ann Rev Med 29:93–98

    Google Scholar 

  • Biswas CK, Arze RS, Ramos JM, Ward MK, Dewar JH, Kerr DN, Kenward DH (1982) Effect of aluminum hydroxide on serum ionised calcium, immunoreactive parathyroid hormone, and aluminum in chronic renal failure. Br Med J 284:776–778

    Google Scholar 

  • Bowen HMJ (1966) Trace elements in biochemistry. Academic Press, London New York, p 241

    Google Scholar 

  • Brun A, Brunk U (1970) Histochemical indication for lysosomal localization of heavy metals in the normal rat brain and liver. J Histochem Cytochem 18:820–827

    Google Scholar 

  • Crapper DR, Krishman SS, Dalton AJ (1973) Brain aluminum distribution in Alzheimer's disease and experimental neurofibrillary degeneration. Science 180:411–513

    Google Scholar 

  • Crapper DR, Krishman SS, Quittkat S (1976) Aluminum, neurofibrillary degeneration and Alzheimer's disease. Brain 99:67–80

    Google Scholar 

  • Crapper DR, Quittkat S, Krishman SS, Dalton AJ, De Boni U (1980) Intranuclear aluminum content in Alzheimer's disease, dialysis encephalopathy and experimental aluminum encephalopathy. Acta Neuropathol (Berl) 50:19–24

    Google Scholar 

  • Danscher G, Zimmer J (1978) An improved Timm sulphide silver method for light and electron microscopic localization of heavy metals in biological tissues. Histochemistry 55:27–40

    Google Scholar 

  • Danscher G (1981) Histochemical demonstration of heavy metals — A revised version of the sulfide silva method suitable for both light and electron microscopy. Histochemistry 71:1–6

    Google Scholar 

  • De Boni U, Scott JW, Crapper DR (1974) Intracellular aluminum binding: A histochemical study. Histochemistry 40: 31–37

    Google Scholar 

  • De Boni U, Otvos A, Scott AO, Crapper DR (1976) Neurofibrillary degeneration induced by systemic aluminum. Acta Neuropathol (Berl) 35:285–294

    Google Scholar 

  • Dowson JH (1982) The evaluation of autofluorescence emission spectra derived from neuronal lipopigment. J Microsc 128:261–270

    Google Scholar 

  • Dowson JH (1983) Autofluorescence emission spectra of neuronal lipopigment in a case of adult-onset ceroidosis (Kuf's disease). Acta Neuropathol (Berl) 59:241–245

    Google Scholar 

  • Frenster JH (1969) Biochemistry and molecular biophysics of heterochromatin and euchromatin. In: Lima-De-Faria A (ed) Handbook of molecular cytology. American Elsevier, New York, pp 251–276

    Google Scholar 

  • Galle P, Berry JP, Duckett S (1980) Electron microprobe ultrastructural localization of aluminum in rat brain. Acta Neuropathol (Berl) 49:245–247

    Google Scholar 

  • Haug F-MS (1973) Heavy metals in the brain. A light microscope study of the rat with Timm's sulfide silver method. Methodological consideration and cytological and regional staining patterns. Adv Anat Embryol Cell Biol 47:1–71

    Google Scholar 

  • Hem SL, White JL, Buehler JD, Luber JR, Grim WM, Lipka EA (1982) Evaluation of antacid suspensions containing aluminum hydroxide and magnesium hydroxide. Am J Hosp Pharmacy 39:1925–1930

    Google Scholar 

  • Ibata Y, Otuska N (1969) Electron microscopic demonstration of zinc in the hippocampal formation using Timm's sulfidesilver technique. J Histochem Cytochem 17:171–175

    Google Scholar 

  • Klatzo I, Wisniewski H, Streicher E (1965) Experimental production of neurofibrillary degeneration. J Neuropathol Exp Neurol 24:187–199

    Google Scholar 

  • Kohler T (1981) Histochemical and cytochemical demonstration of zinc cysteinate in the tapetum lucidium of the cat. Histochemistry 70:173–178

    Google Scholar 

  • Mazarguil H, Haran R, Laussac JP (1982) The binding of aluminum to [Leu5]-enkephalin: An investigation using H,13C and27Al NMR spectroscopy. Biochim Biophys Acta 717:465–472

    Google Scholar 

  • Miller OL, Beatty BR (1969) Nucleolar structures and function. In: Lima-De-Faria A (ed) Handbook of molecular cytology. American Elsevier, New York, pp 605–619

    Google Scholar 

  • Perl DP, Brody AR (1980) Alzheimer's disease: X-ray spectrometric evidence of aluminum accumulation in neurofibrillary tangles bearing neurons. Science 208:297–299

    Google Scholar 

  • Perl DP, Gajdusek DC, Garruto RM, Yanagihera RT, Gibb CJ (1982) Intraneuronal aluminum accumulation in amyotrophic lateral sclerosis and parkinsonism-dementia of Guam. Science 217:1053–1055

    Google Scholar 

  • Perry RP (1969) Nucleoli: The cellular sites of ribosome production. In: Lima-De-Faria A (ed) Handbook of molecular cytology. American Elsevier, New York, pp 620–636

    Google Scholar 

  • Sanderson C, Crapper McLachlan DR, De Boni U (1982) Inhibition of corticosterone binding in vitro in rabbit hippocampus by chromatin-bound aluminum. Acta Neuropathol (Berl) 57:249–254

    Google Scholar 

  • Simard R, Langeiler Y, Mandeville R, Maestracci N, Royal A (1974) Inhibitors as tools in elucidating the structure and function of the nucleus. In: Busch H (ed) The cell nucleus, vol 3. Academic Press, New York London, pp 447–487

    Google Scholar 

  • Spurr AR (1969) A low viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–43

    Google Scholar 

  • Terry RD, Pena C (1965) Experimental production of neurofibrillary degeneration. J Neuropathol Exp Neurol 24:200–210

    Google Scholar 

  • Timm F (1958a) Zur Histochemie der Schwermetalle. Das Sulfidisilberverfahren. Dtsch Z Gerichtl Med 46:706–711

    Google Scholar 

  • Timm F (1958b) Zur Histochemie des Ammonshorngebietes. Z Zellforsch 48:548–555

    Google Scholar 

  • Udenfriend S (1962) Fluorescence assay. In: Biology and medicine, vol 1. Academic Press, New York London, pp 390–391

    Google Scholar 

  • Udenfriend S (1969) Fluorescence assay In: Biology and medicine, vol 2. Academic Press, New York London, pp 491–492

    Google Scholar 

  • Weast RC, Astele MJ (1982) CRC Handbook of chemistry and physics. CRC Press, Boca Raton, FL

    Google Scholar 

  • Wisniewski HM, Terry RD, Pena C, Streicher E, Klatzo I (1965) Experimental production of neurofibrillayry degeneration. J Neuropathol Exp Neurol 24:139 (Abstract)

    Google Scholar 

  • Wisniewski HM, Markiewcz O, Wisniewiski K (1967) Topography and dynamics of neurofibrillar degeneration in aluminum encephalopathy. Acta Neuropathol (Berl) 9:127–133

    Google Scholar 

  • Wisniewski HM, Bloom BR (1975) Experimental allergic optic neuritis iEAON) in the rabbits. J Neurol Sci 24:257–263

    Google Scholar 

  • Wisniewski HM, Wen GY, Lidsky AA (1978) Aluminum-induced neurofibrillary changes in the rabbit retina: ERG and morphological studies. VIIth International Congress of Neuropathology, Washington, DC, section 382 [Abstr]

  • Wisniewski HM, Sturman JA, Shek JW (1979) Aluminum chloride-induced neurofibrillary changes in the developing rabbit: A chronic animal model. Ann Neurol 8:479–490

    Google Scholar 

  • Wisniewski HM, Sturman JA, Shek JW (1982) Chronic model of neurofibrillary changes induced in nature rabbits by metallic aluminum. Neurobiol Aging 3:11–22

    Google Scholar 

  • Yokel RA (1982) Hair as an indicator of excessive aluminum exposure. Clin Chem 28:662–664

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wen, G.Y., Wisniewski, H.M. Histochemical localization of aluminum in the rabbit CNS. Acta Neuropathol 68, 175–184 (1985). https://doi.org/10.1007/BF00690191

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00690191

Key words

Navigation