Skip to main content
Log in

Interaction of metaiodobenzylguanidine with cardioactive drugs: an in vitro study

  • Original Article
  • Published:
European Journal of Nuclear Medicine Aims and scope Submit manuscript

Abstract

Metaiodobenzylguanidine (MIBG), an analogue of noradrenaline, is used to explore the functional integrity of sympathetic nerve endings in the human heart. Various drugs inhibit noradrenaline transport systems and may block the uptake of MIBG. As in vivo studies of the effect of these drugs on myocardial [123I]MIBG uptake are often difficult to perform, we used an in vitro human blood platelet model for this purpose. A platelet preparation from healthy volunteers was incubated with [125I]MIBG alone or different concentrations of drugs currently used in cardiology. Labetalol and propranolol inhibited [125I]MIBG uptake, whereas all other drugs tested (other β-blockers, calcium inhibitors, digoxin and amiodarone) had no effect even at doses exceeding 50 μM. The labetalol dose inhibiting 50% of [125I]MIBG uptake was lower than the plasma concentration of this drug in treated patients, whereas the propranolol dose was higher. This in vitro study of the effect of drugs on MIBG uptake by human blood platelets is predictive of their in vivo effect on myocardial uptake of [123I]MIBG in treated patients, provided that plasma concentration is taken into account.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Wieland S, Brown L, Tobes M, et al. Imaging the primate adrenal medulla with [123I] and [131I] metaiodobenzylguanidine: concise communication.J Nucl Med 1981; 22: 358–364.

    Google Scholar 

  2. Sisson JC, Shapiro B, Wieland DM, et al. Metaiodobenzylguanidine to map scintigraphically the adrenergic nervous system in man.J Nucl Med 1987; 28: 1625–1636.

    Google Scholar 

  3. Schöfer J, Spielmann R, Schuthert A, et al. Iodine-123 metaiodobenzylguanidine scintigraphy: a noninvasive method to demonstrate myocardial adrenergic nervous system disintegrity in patients with idiopathic dilated cardiomyopathy.J Am Coll Cardiol 1988; 12: 1252–1258.

    Google Scholar 

  4. Henderson EB, Kahn JK, Corbett JR, et al. Abnormal I-123 metaiodobenzylguanidine myocardial washout and distribution may reflect myocardial adrenergic derangement in patients with congestive cardiomyopathy.Circulation 1988; 78: 1192–1199.

    Google Scholar 

  5. Glowniak JV, Turner FE, Gray LL. Iodine-123 metaiodobenzylguanidine imaging of the heart in idiopathic congestive cardiomyopathy and cardiac transplants.J Nucl Med 1989; 30: 1182–1191.

    Google Scholar 

  6. Merlet P, Valette H, Dubois-Randé JL, et al. Prognostic value of cardiac metaiodobenzylguanidine imaging in patients with heart failure.J Nucl Med 1992; 33: 471–477.

    Google Scholar 

  7. Fagret D, Wolf JE, Vanzetto G, et al. Myocardial uptake of metaiodobenzylguanidine in patients with left ventricular hypertrophy secondary to valvular aortic stenosis.J Nucl Med 1993; 34: 57–60.

    Google Scholar 

  8. Stanton MS, Tuli MM, Radtke NL, et al. Regional sympathetic denervation after myocardial infarction in humans detected noninvasively using I-123-metaiodobenzylguanidine.J Am Coll Cardiol 1989; 14: 1519–1526.

    Google Scholar 

  9. McGhie AL, Corbett JR, Aker MS, et al. Regional cardiac adrenergic function using I-123 meta-iodobenzylguanidine tomography imaging after acute myocardial infarction.Am J Cardiol 1991; 67: 236–242.

    Google Scholar 

  10. Mäntysaari M, Kuikka J, Mustonen J, et al. Noninvasive detection of cardiac sympathetic nervous dysfunction in diabetic patients using [123I] metaiodobenzylguanidine.Diabetes 1992; 41: 1069–1075.

    Google Scholar 

  11. Jaques JS, Tobes MC, Sisson JC, et al. Comparison of the sodium dependency of uptake of meta-iodobenzylguanidine and norepinephrine into cultured bovine adrenomedullary cells.Mol Pharmacol 1984; 26: 539–546.

    Google Scholar 

  12. Tobes MC, Jaques JS, Wieland DM, et al. Effect of uptake-one inhibitors on the uptake of norepinephrine and metaiodobenzylguanidine.J Nucl Med 1985; 26: 897–907.

    Google Scholar 

  13. Sisson JC, Wieland DM, Sherman P, et al. Metaiodobenzylguanidine as an index of the adrenergic nervous system integrity and function.J Nucl Med 1987; 28: 1620–1624.

    Google Scholar 

  14. Glowniak JV, Kilty JE, Amara SG, et al. Evaluation of metaiodobenzylguanidine uptake by norepinephrine, dopamine and serotonin transporters.J Nucl Med 1993; 34: 1140–1146.

    Google Scholar 

  15. Gasnier B, Roisin MP, Scherman D, et al. Uptake of metaiodobenzylguanidine by bovine chromaffin granule membrane.J Pharmacol Exp Ther 1986; 29: 275–280.

    Google Scholar 

  16. Nakajo M, Shimabukuro K, Yoshimura H, et al. Iodine-131 metaiodobenzylguanidine intra- and extravesicular accumulation in the rat heart.J Nucl Med 1986; 27: 84–89.

    Google Scholar 

  17. Maxwell RA, Ferris RM, Burcsu JE. Structural requirements for inhibition of noradrenaline uptake by phenethylamine derivatives, desipramine, cocaine, and other compounds. In: Paton DM, ed.The mechanism of neuronal and extraneuronal transport of catecholamines. New York: Raven Press; 1976: 95–147.

    Google Scholar 

  18. Bönisch H. The role of co-transported sodium in the effect of indirectly acting sympathomimetic amines.Naunyn-Schmiedeberg's Arch Pharmacol 1979; 332: 135–141.

    Google Scholar 

  19. Abrams WB, Salomon HM. The human platelet as a pharmacologic model for the adrenergic neuron.Clin Pharmacol Ther 1969; 10: 702–709.

    Google Scholar 

  20. Sneddon JM. Blood platelets as a model for monoamine-containing neurons. In: Kerkut GA, Philipps SW, eds.Prog Neurobiol II. Oxford: Pergamon Press; 1973: 151–198.

    Google Scholar 

  21. Guilloteau D, Chalon S, Baulieu JL, et al. Comparison of MIBG and monoamine uptake mechanisms: pharmacological animal and blood platelets studies.Eur J Nucl Med 1988; 14: 341–344.

    Google Scholar 

  22. Ross SB, Renyl AL. Tricyclic antidepressant agents. I. Comparison of the inhibition of the uptake of3H-noradrenaline and14C-5-hydroxytryptamine in slices and crude synaptosome preparations of the midbrain-hypothalamus region of the rat brain.Acta Pharmacol 1975; 36: 382–394.

    Google Scholar 

  23. Khafagi FA, Shapiro B, Fig LM, et al. Labetalol reduces iodine-131 MIBG uptake by pheochromocytoma and normal tissues.J Nucl Med 1989; 30: 481–489.

    Google Scholar 

  24. Fagret D, Wolf JE, Comet M. Myocardial uptake of meta[131I]-iodobenzylguanidine ([123I]-MIBG) in patients with myocardial infarct.Eur J Nucl Med 1989; 15: 624–628.

    Google Scholar 

  25. Doggrell SA, Paton DM. Effect of labetalol on the accumulation and release of noradrenaline in rat ventricle.Eur J Pharmacol 1978; 51: 303–307.

    Google Scholar 

  26. Drew GM, Hilditch A, Levy GP. Effect of labetalol on the uptake of [3H]-(−)-noradrenaline into the isolated vas deferens on the rat.Br J Pharmacol 1978; 63: 471–474.

    Google Scholar 

  27. Rabinovitch MA, Colin PR, Rouleau JL, et al. Metaiodobenzylguanidine [131I] scintigraphy detects impaired myocardial sympathetic neuronal transport function of canine mechanical-overload heart failure.Circ Res 1987; 61: 797–804.

    Google Scholar 

  28. Date MW, De Marco T, Botvinick EH, et al. Scintigraphic assessment of MIBG uptake in globally denervated human and canine hearts. Implications for clinical studies.J Nucl Med 1992; 33: 1444–1450.

    Google Scholar 

  29. Louis WJ, McNeil JJ, Drummer OH. Pharmacology of combined α-β-blockade I.Drug 1984; 28: 16–34.

    Google Scholar 

  30. Classen V, Davies JE, Herting G, et al. Fluvoxamine, a specific 5-HT uptake inhibitor.Br J Pharmacol 1977; 60: 505–516.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huguet, F., Fagret, D., Caillet, M. et al. Interaction of metaiodobenzylguanidine with cardioactive drugs: an in vitro study. Eur J Nucl Med 23, 546–549 (1996). https://doi.org/10.1007/BF00833390

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00833390

Key words

Navigation