Skip to main content
Log in

Reactive oxygen molecules, oxidant injury and renal disease

  • Invited Review
  • Published:
Pediatric Nephrology Aims and scope Submit manuscript

Abstract

Oxidant injury has been implicated in the pathogenesis of inflammotory, metabolic and toxic insults, in ischemic-reperfusion injury, and in carcinogenesis, aging and atherosclerosis. Oxidant injury is initiated by free radicals and reactive oxygen molecules which are generated by activated neutrophils, monocytes, and mesangial cells, during normal and abnormal metabolic processes, and from the metabolism of exogenous drugs and toxins. When cells and organs are exposed to oxidant stress, several different antioxidant defense mechanisms operate to prevent or limit oxidant injury. When antioxidant defense mechanisms are decreased, or when the generation of reactive oxygen molecules is increased, oxidant injury results from the shift in the oxidant/antioxidant balance. Oxidant-induced alterations of proteins, membranes, DNA, and basement membranes leads to cell and organ dysfunction. Several renal diseases including glomerulonephritis, vasculitis, toxic nephropathies, pyelonephritis, acute renal failure, and others are likeky to be mediated at least in part by oxidant injury. In the future, mechanisms to decrease the generation of reactive oxygen molecules and/or antioxidant therapy may develop into new avenues of therapeutic intervention.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cross CE, Halliwell B, Borish ET, Pryor WA, Ames BN, Saul RL, McCord JM, Harmon D (1988) Oxygen radicals and human disease. Ann Intern Med 107: 526–545

    Google Scholar 

  2. Halliwell B (1987) Oxidants and human disease: some new concepts. FASEB J 1: 388–364

    PubMed  Google Scholar 

  3. McCord JM, Fridovich I (1978) The biology and pathology of oxygen radicals. Ann Intern Med 89: 122–127

    PubMed  Google Scholar 

  4. Floyd RA (1990) Role of oxygen free radicals in carcinogenesis and brain ischemia. FASEB J 4: 2587–2597

    PubMed  Google Scholar 

  5. Fridovich I (1976) Oxygen radicals, hydrogen peroxide, and oxygen toxicity. In: Pryor WA (ed) Free radicals in biology, vol 1. Academic Press, New York pp 239–277

    Google Scholar 

  6. Suzuki M, Inauen W, Kvietys PR, Grisham MB, Meininger C, Schelling ME, Granger HJ, Granger DN (1989) Superoxide mediates reperfusion-induced leukocyte-endothelial cell interactions. Am J Physiol 257: H1740-H1745

    PubMed  Google Scholar 

  7. Anonymous (1985) Metal chelation therapy, oxygen radicals, and human disease. Lancet I: 143–145

  8. Babior BM (1984) The respiratory burst of phagocytes. J Clin Invest 73: 599–601

    PubMed  Google Scholar 

  9. Malech HL, Gallin JI (1987) Neutrophils in human disease. N Engl J Med 317: 687–694

    PubMed  Google Scholar 

  10. Weiss SJ (1989) Tissue destruction by neutrophils. N Engl J Med 320: 365–376

    PubMed  Google Scholar 

  11. Test ST, Lampert MB, Ossanna PJ, Thoene JG, Weiss SJ (1984) Generation of nitrogen-chlorine oxidants by human phagocytes. J Clin Invest 74: 1341–1349

    PubMed  Google Scholar 

  12. Baud L, Ardaillou R (1986) Reactive oxygen species: production and role in the Kidney. Am J Physiol 251: F765-F776

    PubMed  Google Scholar 

  13. Adler S, Baker PJ, Johnson RJ, Ochi RF, Pritzi P, Couser WG (1986) Complement membrane attack complex stimulates production of reactive oxygen metabolites by cultured rat mesangial cells. J Clin Invest 77: 762–767

    PubMed  Google Scholar 

  14. Baud L, Hagege J, Sraer J, Rondeau E, Perez J, Ardaillou R (1983) Reactive oxygen production by cultured rat glomerular mesangial cells during phagocytosis in associated with stimulation of lipoxygenase activity. J Exp Med 158: 1836–1852

    PubMed  Google Scholar 

  15. Horton JK, Davies M, Topley N, Thomas D, Williams JD (1990) Activation of the inflammatory response of neutrophils by Tamm-Horsfall glycoprotein. Kidney Int 37: 717–726

    PubMed  Google Scholar 

  16. Nathan CF (1987) Neutrophil activation on biological surfaces. J Clin Invest 80: 1550–1560

    PubMed  Google Scholar 

  17. Janco RL, English D (1983) Regulation of monocyte oxidative metabolism: chemotactic factor enhancement of superoxide release, hydroxyl radical generation, and chemiluminescence. J Lab Clin Med 102: 890–898

    PubMed  Google Scholar 

  18. Johnston RB, Kitagawa S (1985) Molecular basis for the enhanced respiratory burst of activated macrophages. Fed Proc 44: 2927–2932

    PubMed  Google Scholar 

  19. Freeman BA, Crapo JD (1982) Biology of disease: free radicals and tissue injury. Lab Invest 47: 412–426

    PubMed  Google Scholar 

  20. Chance B, Seis H, Booeris A (1979) Hydroperoxide metabolism in mammalian organs. Physiol Rev 59: 527–605

    PubMed  Google Scholar 

  21. McCord JM (1985) Oxygen-derived free radicals in postischemic tissue injury. N Engl J Med 312: 159–163

    PubMed  Google Scholar 

  22. McKelvey TG, Hollwarth ME, Granger DN, Engerson TD, Landler U, Jones HP (1988) Mechanisms of conversion of xanthine dehydrogenase to xanthine oxidase in ischemic rat liver and kidney. Am J Physiol 254: G753-G760

    PubMed  Google Scholar 

  23. Morgan TR, Laudone VP, Heston WDW, Zeitz L, Fair WR (1988) Free radical production by high energy shock waves-comparison with ionizing irradiation. J Urol 139: 186–189

    PubMed  Google Scholar 

  24. McCoy RN, Hill KE, Ayon MA, Stein JH, Burk RF (1988) Oxidant stress following renal ischemia: changes in the glutathione redox ratio. Kidney Int 33: 812–817

    PubMed  Google Scholar 

  25. Beckman JS, Minor RL, White CW, Repine JE, Rosen GM, Freeman BA (1988) Superoxide dismutase and catalase conjugated to polyethylene glycol increases endothelial enzyme activity and oxidant resistance. J Biol Chem 263: 6884–6892

    PubMed  Google Scholar 

  26. Andreoli SP, Mallett CH, Bergstein JM (1986) Role of glutathione in protecting endothelial cells against hydrogen peroxide oxidant injury. J Lab Clin Med 108: 190–198

    PubMed  Google Scholar 

  27. Hagen TM, Aw TY, Jones DP (1988) Glutathione uptake and protection against oxidative injury in isolated kidney cells. Kidney Int 34: 74–81

    PubMed  Google Scholar 

  28. Harlan JM, Levine JD, Callahan KS, Schwartz BR (1984) Glutathione redox cycle protects cultured endothelial cells against lysis by extracellularly generated hydrogen peroxide. J Clin Invest 73: 706–713

    PubMed  Google Scholar 

  29. Messana JM, Cieslinski DA, O'Connor RP, Humes HD (1988) Glutathione protects against exogenous oxidant injury to rabbit renal proximal tubules. Am J Physiol 255: F874-F884

    PubMed  Google Scholar 

  30. Andreoli SP, McAteer JA Antioxidant defense mechanisms of endothelial cells and renal tubular epithelial cells: role of the glutathione redox cycle and catalase. Pediatr Res 27: 323a

  31. Broadley C, Hoover RL (1989) Ceruloplasmin reduces the adhesion and scavenges superoxide during the interaction of activated polymorphonuclear leukocytes with endothelial cells. Am J Pathol 135: 647–655

    PubMed  Google Scholar 

  32. Machlin LJ, Bendich A (1987) Free radical tissue damage: protective role of antioxidant nutrients. FASEB J 1: 441–445

    PubMed  Google Scholar 

  33. Andreoli SP, McAteer JM (1990) Reactive oxygen molecule mediated injury in vitro: differential response by endothelial cells and renal tubule epithelial cells. Kidney Int 38: 785–794

    PubMed  Google Scholar 

  34. Lash LH, Tokarz JJ (1990) Oxidative stress in isolated rat renal proximal and distal tubular cells. Am J Physiol 259: F338-F347

    PubMed  Google Scholar 

  35. Hayashibe H, Asayama K, Dobashi K, Kato K (1990) Prenatal development of antioxidant enzymes in rat lung, kidney, and heart: marked increase in immunoreactive superoxide dismutases, glutathione peroxidase, and catalase in the kidney. Pediatr Res 27: 472–475

    PubMed  Google Scholar 

  36. Mak IT, Weglicki WB (1988) Protection by B-blocking agents against free radical-mediated sarcolemmal lipid peroxidation. Circ Res 63:262–266

    PubMed  Google Scholar 

  37. Andreoli SP (1990) Captopril scavenges hydrogen peroxide and lessens oxidant induced ATP depletion in NHK-C and endothelial cells. J Am Soc Nephrol 1:606a

    Google Scholar 

  38. Parthasarathy S, Young SG, Witztum JL, Pittman RC, Steinberg D (1986) Probucol inhibits oxidative modification of low density lipo-protein. J Clin Invest 77: 641–644

    PubMed  Google Scholar 

  39. Sagone AL, Democko C, Clark L, Kartha M (1983) Determination of hydroxyl radical production in aqueous solutions irradiated to clinically significant doses. J Lab Clin Med 101: 196–204

    PubMed  Google Scholar 

  40. Stadtman ER (1990) Metal ion-catalyzed oxidation of proteins: biochemical mechanism and biological consequences. Free Radic Biol Med 9: 315–325

    Article  PubMed  Google Scholar 

  41. Farber JL, Kyle ME, Coleman JB (1990) Mechanisms of cell injury by activated oxygen species. Lab Invest 62: 670–679

    PubMed  Google Scholar 

  42. Schraufstatter IU, Hyslop PA, Jackson JH, Cochrane CG (1988) Oxidant-induced DNA damage of target cells. J Clin Invest 82: 1040–1050

    PubMed  Google Scholar 

  43. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1985) Glutathione cycle activity and pyridine nucleotide levels in oxidant-induced injury of cells. J Clin Invest 76: 1131–1139

    PubMed  Google Scholar 

  44. Spragg RG, Hinshaw DB, Hyslop PA, Schraufstatter IU, Cochrane CG (1985) Alterations in adenosine triphosphate and energy charge in cultured endothelial and P388D cells after oxidant injury. J Clin Invest 76: 1471–1476

    PubMed  Google Scholar 

  45. Hyslop PA, Hinshaw DB, Schraufstatter IU, Sklar LA, Spragg RG, Cochrane CG (1986) Intracellular calcium homeostasis during hydrogen peroxide injury to cultured P388D, cells. J Cell Physiol 129: 356–366

    PubMed  Google Scholar 

  46. Andreoli SP (1989) Mechanisms of endothelial cell ATP depletion after oxidant injury. Pediatr Res 25: 97–101

    PubMed  Google Scholar 

  47. Andreoli SP, Bachner RL, Bergstein JM (1985) In vitro detection of endothelial cell damage utilizing 2-deoxy-D-3H-glucose: comparison with51chromium,3H-adenine and LDH. J Lab Clin Med 106: 253

    PubMed  Google Scholar 

  48. Schraufstatter IU, Hinshaw DB, Hyslop PA, Spragg RG, Cochrane CG (1986) Oxidant injury of cells. J Clin Invest 77: 1312–1320

    PubMed  Google Scholar 

  49. Hyslop PA, Hinshaw DB, Halsey WA Jr, Schraufstatter IU, Sauerheber RD, Spragg RG, Jackson JH, Cochrane CG (1985) Mechanisms of oxidant-mediated cell injury. J Biol Chem 263: 1665–1675

    Google Scholar 

  50. Andreoli SP, Leichty EA, Mallett C (1990) Exogenous adenine nucleotides replete endothelial cell adenosine triphosphate after oxidant injury by adenosine uptake. J Lab Clin Med 115: 304–313

    PubMed  Google Scholar 

  51. Orrenius S, McConkey DJ, Nicotera P (1988) Mechanisms of oxidant-induced cell damage. In: Ceruti PA, Fridovich I, McCord J (eds) Oxy-radicals in molecular biology and pathology. Liss, New York, New York, pp 327–339

    Google Scholar 

  52. Scott JA, Khaw BA, Homcy CJ, Rabito CA (1987) Oxygen radicals alter the cell membrane potential in a renal cell line (LLC-PK1) with differentiated characteristics of proximal tubular cells. 897: 25–32

  53. Welsh MJ, Shasby DM, Husted RM (1985) Oxidants increase paracellular permeability in a cultured epithelial cell line. J Clin Invest 76: 1155–1168

    PubMed  Google Scholar 

  54. Band L, Nivez MP, Chansel D, Ardaillou R (1981) Stimulation by oxygen radicals of prostaglandin production by rat renal glomeruli. Kidney Int 20: 332–339

    PubMed  Google Scholar 

  55. Shah SV (1984) Effect of enzymatically generated reactive oxygen metabolites on the cyclic nucleotide content in isolated rat glomeruli. J Clin Invest 73: 393–401

    Google Scholar 

  56. Fligiel SEG, Lee EC, McCoy JP, Johnson KJ, Varani J (1984) Protein degradation following treatment with hydrogen peroxide. Am J Pathol 115: 418–425

    PubMed  Google Scholar 

  57. Vissers MCM, Wiggins R, Fantone JC (1989) Comparative ability of human monocytes and neutrophils to degrade glomerular basement membrane in vitro. Lab Invest 60: 831–838

    PubMed  Google Scholar 

  58. Johnson RJ, Couser WG, Alpers CE, Vissers M, Schulze M, Klebanoff SJ (1988) The human neutrophil serine proteinases, elastase and cathepsin G, can mediate glomerular injury in vivo. J Exp Med 168: 1169–1174

    Article  PubMed  Google Scholar 

  59. Shah SV, Baricos WH, Basci A (1987) Degradation of human glomerular basement membrane by stimulated neutrophils. J Clin Invest 79: 25–31

    PubMed  Google Scholar 

  60. Rubanyi GM (1988) Vascular effects of oxygen-derived free radicals. Free Radio Biol Med 4: 107–120

    Article  Google Scholar 

  61. Gryglewski RJ, Palmer RMJ, Moncada S (1986) Superoxide anion is involved in the breakdown of endothelium-derived vascular relaxing factor. Nature 320: 454–456

    Article  PubMed  Google Scholar 

  62. Shah SV (1989) Role of reactive oxygen metabolites in experimental glomerular disease. Kidney Int 35: 1093–1106

    PubMed  Google Scholar 

  63. Rehan A, Johnson KJ, Kunkel RG, Wiggins RC (1985) Role of oxygen radicals in phorbol myristate acetate-induced glomerular injury. Kidney Int 27: 503–511

    PubMed  Google Scholar 

  64. Yoshioka T, Ichikawa I (1989) Glomerular dysfunction induced by polymorphonuclear leukocyte-derived reactive oxygen species. Am J Physiol 257: F53-F59

    PubMed  Google Scholar 

  65. Rehan A, Wiggins RC, Kunkel RG, Till GO, Johnson KJ (1986) Glomerular injury and proteinuria in rats after intrarenal injection of cobra venom factor. Am J Pathol 123: 57–66

    PubMed  Google Scholar 

  66. Johnson RJ, Couser WG, Chi EY, Adler S, Kiebanoff SJ (1987) New mechanism for glomerular injury. J Clin Invest 79: 1379–1387

    PubMed  Google Scholar 

  67. Johnson RJ, Guggenheim SJ, Klebanoff SJ, Ochi RF, Wass A, Baker P, Schulze M, Couser WG (1988) Morphologic correlates of glomerular oxidant injury induced by the myeloperoxidase-hydrogen peroxide-halide system of the neutrophil. Lab Invest 5: 294–301

    Google Scholar 

  68. Rehan A, Johnson KJ, Wiggins RC, Kunkel RG, Ward PA (1984) Evidence for the role of oxygen radicals in acute nephrotoxic nephritis. Lab Invest 51: 396–403

    PubMed  Google Scholar 

  69. Tucker BJ, Gushwa LC, Wilson CB, Blantz RC (1985) Effect of leukocyte depletion on glomerular dynamics during acute glomerular immune injury. Kidney Int 28: 28–35

    PubMed  Google Scholar 

  70. Boyce NW, Holdsworth SR (1986) Hydroxyl radical mediation of immune renal injury by desferrioxamine. Kidney Int 30: 813–817

    PubMed  Google Scholar 

  71. Tomosugi NI, Cashman SJ, Hay H, Pusey CD, Evans DJ, Shaw A, Rees AJ (1989) Modulation of antibody-mediated glomerular injury in vivo by bacterial lipopolysaccharide, tumor necrosis factor, and IL-1. J Immunol 142: 3083–3090

    PubMed  Google Scholar 

  72. Boyce NW, Tipping PG, Holdsworth SR (1989) Glomerular macrophages produce reactive oxygen species in experimental glomerulonephritis. Kidney Int 35: 778–782

    PubMed  Google Scholar 

  73. Falk JR, Jennette JC (1988) Anti-neutrophil cytoplasmic autoantibodies with specificity for myeloperoxidase in patients with systemic vasculitis and idiopathic necrotizing and crescentic glomerulonephritis. N Engl J Med 318: 1651–1657

    PubMed  Google Scholar 

  74. Jennette JC, Wilkman AS, Falk RJ (1989) Anti-neutrophil cytoplasmic autoantibody-associated glomerulonephritis and vasculitis. Am J Pathol 135: 921–930

    PubMed  Google Scholar 

  75. Falk RJ, Terrell RS, Charles LA, Jennette JC (1990) Anti-neutrophil cytoplasmic autoantibodies induce neutrophils to degranulate and produce oxygen radicals in vitro. Proc Natl Acad Sci USA 87: 4115–4119

    PubMed  Google Scholar 

  76. Shah SV (1988) Evidence suggesting a role for hydroxyl radical in passive Heymann nephritis in rats. Am J Physiol 254: F337-F344

    PubMed  Google Scholar 

  77. Rahman MA, Emancipator SS, Sedor JR (1988) Hydroxyl radical scavengers ameliorate proteinuria in rat immune complex glomerulonephritis. J Lab Clin Med 112: 619–626

    PubMed  Google Scholar 

  78. Paller MS, Hoidal JR, Ferris TF (1984) Oxygen free radicals in ischemic acute renal failure in the rat. J Clin Invest 74: 1156–1164

    PubMed  Google Scholar 

  79. Paller MS, Hedlund BE (1988) Role of iron in postischemic renal injury in the rat. Kidney Int 34: 474–480

    PubMed  Google Scholar 

  80. Linas SL, Whittenburg D, Repine JE (1990) role of xanthine oxidase in ischemia/reperfusion injury. Am J Physiol 258: F711-F716

    PubMed  Google Scholar 

  81. Nath KA, Paller MS (1990) Dietary deficiency of antioxidants exacerbates ischemic injury in the rat kidney. Kidney Int 38: 1109–1117

    PubMed  Google Scholar 

  82. Linas SL, Shanley PF, Whittenburg D, Berger E, Repine JE (1988) Neutrophils accentuate ischemic-reperfusion injury in isolated perfused rat kidneys. Am J Physiol 255: F728-F735

    PubMed  Google Scholar 

  83. Hellberg POA, Kallskog TOK (1989) Neutrophil-mediated postischemic tubular leakage in the rat kidney. Kidney Int 36: 555–561

    PubMed  Google Scholar 

  84. Koyama I, Bulkley GB, Williams GM, Im MJ (1985) The role of oxygen free radicals in mediating the reperfusion injury of cold-preserved ischemic kidneys. Transplantation 40: 590–595

    PubMed  Google Scholar 

  85. Bry WI, Collins GM, Halasz NA, Jellinek M (1984) Improved function of perfused rabbit kidneys by prevention of oxidative injury. Transplantation 38: 579–582

    PubMed  Google Scholar 

  86. Gamelin LM, Zager RA (1988) Evidence against oxidant injury as a critical mediator of postischemic acute renal failure. Am J Physiol 255: F450-F460

    PubMed  Google Scholar 

  87. Joannidis M, Gstraunthaler G, Pfaller W (1990) Xanthine oxidase: evidence against a causative role in renal reperfusion injury. Am J Physiol 258: F232-F236

    PubMed  Google Scholar 

  88. Borkan SC, Schwartz JH (1989) Role of oxygen free radical species in in vitro models of proximal tubular ischemia. Am J Physiol 257: F114-F125

    PubMed  Google Scholar 

  89. Doctor RB, Mandel LJ (1991) Minimal role of xanthine oxidase and oxygen free radicals in rat renal tubular reoxygenation injury. J Am Soc Nephrol 1: 959–969

    PubMed  Google Scholar 

  90. Thornton MA, Winn R, Alpers CE, Zager RA (1989) An evaluation of the neutrophil as a mediator of in vivo renal ischemic-reperfusion injury. Am J Pathol 135: 509–515

    PubMed  Google Scholar 

  91. Paller MS (1989) Effect of neutrophil depletion on ischemic renal injury in the rat. J Lab Clin Med 113: 379–386

    PubMed  Google Scholar 

  92. Linas SL, Whittenburg D, Repine JE (1987) O2 metabolites cause reperfusion injury after short but not prolonged renal ischemia. Am J Physiol 253: F685-F691

    PubMed  Google Scholar 

  93. Diamond JR, Bonventre JV, Karnovsky MJ (1986) A role for oxygen free radicals in aminonucleoside nephrosis. Kidney Int 29: 478–483

    PubMed  Google Scholar 

  94. Thakur V, Walker PD, Shah SV (1988) Evidence suggesting a role for hydroxyl radical in puromycin aminonucleoside-induced proteinuria. Kidney Int 34: 494–499

    PubMed  Google Scholar 

  95. Beaman M, Birtwistle R, Howie AJ, Michael J, Adu D (1987) The role of superoxide anion and hydrogen peroxide in glomerular injury induced by puromycin aminonucleoside in rats. Clin Sci 73: 329–332

    PubMed  Google Scholar 

  96. Doroshow JH, Locker GY, Ifrim I, Myers CE (1981) Prevention of doxorubicin cardiac toxicity in the mouse byN-acetylcysteine. J Clin Invest 68: 1053–1064

    PubMed  Google Scholar 

  97. Myers CE, McGuire WP, Liss RH, Iprim I, Grotzinger K, Young RC (1977) Adriamycin: the role of lipid peroxidation in cardiac toxixity and tumor response. Science 197: 165–167

    PubMed  Google Scholar 

  98. Thayer WS (1988) Evaluation of tissue indicators of oxidation stress in rats treated chronically with Adriamycin. Biochem Pharmacol 37: 2189–2194

    Article  PubMed  Google Scholar 

  99. Ohishi A, Suzuki H, Nakamoto H, Katsumata H, Sakaguchi H, Saruta T (1989) Differences in the effects of angiotensin converting enzyme inhibitors with or without a thiol group in chronic renal failure in rats. Clin Sci 76: 353–356

    PubMed  Google Scholar 

  100. Shah SV, Walker PD (1988) Evidence suggesting a role for hydroxyl radical in glycerol-induced acute renal failure. Am J Physiol 255: F438-F443

    PubMed  Google Scholar 

  101. Paller MS (1988) Hemoglobin- and myoglobin-induced acute renal failure in rats: role of iron in nephrotoxicity. Am J Physiol 255: F539-F544

    PubMed  Google Scholar 

  102. Walker PD, Shah SV (1987) Gentamicin enhanced production of hydrogen peroxide by renal cortical mitochondria. Am J Physiol 253: C495-C499

    PubMed  Google Scholar 

  103. Walker PD, Shah SV (1988) Evidence suggesting a role for hydroxyl radical in gentamicin-induced acute renal failure in rats. J Clin Invest 81: 334–341

    PubMed  Google Scholar 

  104. Bakris GL, Lass N, Gaber AO, Jones JD, Burnett JC Jr (1990) Radiocontrast medium-induced declines in renal function: a role for oxygen free radicals. Am J Physiol 258: F115-F120

    PubMed  Google Scholar 

  105. Hanneman J, Baumann K (1988) Cisplatin-induced lipid peroxidation and decrease of gluconeogenesis in rat kidney cortex: different effects of antioxidants and radical scavengers. Toxicology 51: 119–132

    Article  PubMed  Google Scholar 

  106. O'Regan S, Fong JSC (1978) Lipid peroxidation in the hemolytic uremic syndrome. Medical Hypothesis 4: 353–361

    Article  Google Scholar 

  107. O'Regan S, Chesney RW, Kaplan BS, Drummond KN (1980) Red cell membrane phospholipid abnormalities in the hemolytic uremic syndrome. Clin Nephrol 15: 14–17

    Google Scholar 

  108. Milford D, Taylor CM, Rafaat F, Halloran E, Dawes J (1989) Neutrophil elastases and haemolytic uraemic syndrome. Lancet II: 1153

    Article  Google Scholar 

  109. Forsyth KD, Simpson AC, Fitzpatrick MM, Barratt TM, Levinsky RJ (1989) Neutrophil-mediated endothelial injury in haemolytic ureamic syndrome. Lancet II: 411–414

    Article  Google Scholar 

  110. Vedanarayanan VV, Kaplan BS, Fong JSC (1987) Neutrophil function in an experimental model of hemolytic uremic syndrome. Pediatr Res 21: 252–256

    PubMed  Google Scholar 

  111. Walters MDS, Matthei IU, Kay R, Dillon MJ, Barratt TM (1989) The polymorphonuclear leucocyte count in childhood haemolytic uraemic syndrome. Pediatr Nephrol 3: 130–134

    PubMed  Google Scholar 

  112. Karmali MA, Petric M, Lim C, Fleming PC, Arbus GS, Lior H (1985) The association between idiopathic hemolytic uremic syndrome and infection by verotoxin-producingEscherichia coli. J Infect Dis 151: 775–782

    PubMed  Google Scholar 

  113. Milford DV, Taylor CM (1990) New insights into the haemolytic uraemic syndromes. Arch Dis Child 65: 713–715

    PubMed  Google Scholar 

  114. Cotran RS, Pober JS (1990) Cytokine-endothelial interactions in inflammation, immunity, and vascular injury. J Am Soc Nephrol 1: 225–235

    PubMed  Google Scholar 

  115. Moore KL, Andreoli SP, Esmon NL, Esmon CT, Bang NU (1987) Endotoxin enhances tissue factor and suppresses thrombomodulin expression of human vascular endothelium in vitro. J Clin Invest 79: 124–130

    PubMed  Google Scholar 

  116. Harris DC, Chan H, Schrier RW (1988) Remnant kidney hypermetabolism and progression of chronic renal failure. Am J Physiol: F267–F276

  117. Schrier RW, Harris DCH, Chan L, Shapiro JI, Caramelo C (1988) Tubular hypermetabolism as a factor in the progression of chronic renal failure. Am J Kidney Dis 12: 243–249

    PubMed  Google Scholar 

  118. Nath KA, Croatt AJ, Hostetter TH (1990) Oxygen consumption and oxidant stress in surviving nephrons. Am J Physiol 258: F1354-F1362

    PubMed  Google Scholar 

  119. Nath KA, Salahudeen AK (1990) Induction of renal growth and injury in the intact rat kidney by dietary deficiency of antioxidants. J Clin Invest 86: 1179–1192

    PubMed  Google Scholar 

  120. Glauser MP, Neylan P, Bille J (1987) The inflammatory response and tissue damage. Pediatr Nephrol 1: 615–622

    PubMed  Google Scholar 

  121. Glauser MP, Lyons JM, Braude AI (1978) Prevention of chronic experimental pyelonephritis by suppression of acute suppuration. J Clin Invest 61: 403–407

    PubMed  Google Scholar 

  122. Bille J, Glauser MP (1982) Protection against chronic pyelonephritis in rats by suppression of acute suppuration: effect of colchicine and neutropenia. J Infect Dis 146: 220–226

    PubMed  Google Scholar 

  123. Topley N, Steadman R, Mackenzie R, Knowlden JM, Williams JD (1989) Type I fimbriate strains ofEscherichia coli initiate renal parenchymal scarring. Kidney Int 36: 609–616

    PubMed  Google Scholar 

  124. Bergstein J, Andreoli SP, Provisor AJ, Yum M (1986) Radiation nephritis following total-body irradiation and cyclophosphamide in preparation for bone marrow transplantation. Transplantation 41: 63–66

    PubMed  Google Scholar 

  125. Antignac C, Gubler MC, Leverger G, Broyer M, Habib R, Lacoste M, Beziau A, Naizot C (1989) Delayed renal failure with extensive mesangiolysis following bone marrow transplantation. Kidney Int 35: 1336–1344

    PubMed  Google Scholar 

  126. Loomis LJ, Aaronson AJ, Rudinsky R, Spargo BH (1989) Hemolytic uremic syndrome following bone marrow transplantation: a case report and review of the literature. Am J Kidney Dis 14: 324–328

    PubMed  Google Scholar 

  127. Dunn MM, Drab EA, Rubin DB (1986) Effects of irradiation on endothelial cell-polymorphonuclear leukocyte interactions. J Appl Physiol 60: 1932–1937

    PubMed  Google Scholar 

  128. Williams CM, Kaude JV, Newman RC, Peterson JC, Thomas WC (1988) Extracorporeal shock-wave lithotripsy: long-term complications. AJR 150: 311–315

    PubMed  Google Scholar 

  129. Lingeman JE, Woods JR, Toth PD (1990) Blood pressure changes following extracorporeal shock wave lithotripsy and other forms of treatment for nephrolithiasis. JAMA 263: 1789–1794

    PubMed  Google Scholar 

  130. Harris KPG, Schreiner GF, Klahr S (1989) Effect of leukocyte depletion on the function of the postobstructed kidney in the rat. Kidney Int 36: 210–215

    PubMed  Google Scholar 

  131. Modi KS, Morrissey J, Shah SV, Schreiner GF, Klahr S (1990) Effects of probucol on renal function in rats with bilateral ureteral obstruction. Kidney Int 38: 843–850

    PubMed  Google Scholar 

  132. Halliwell B (1989) Free radicals, reactive oxygen species and human disease: a critical evaluation with special reference to atherosclerosis. Br J Exp Pathol 70: 737–757

    PubMed  Google Scholar 

  133. Steinberg D, Parthasarathy S, Carew TE, Khoo JC, Witzum JL (1989) Beyond cholesterol. Modification of low-density lipoprotein that increases its atherogenicity. N Engl J Med 320: 915–924

    PubMed  Google Scholar 

  134. Gutteridge JMC, Quinlan GJ, Clark I, Halliwell B (1985) Aluminum salts accelerate peroxidation of membrane lipids stimulated by iron salts. Biochim Biophys Acta 835: 441–447

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andreoli, S.P. Reactive oxygen molecules, oxidant injury and renal disease. Pediatr Nephrol 5, 733–742 (1991). https://doi.org/10.1007/BF00857888

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00857888

Key words

Navigation