Skip to main content
Log in

Changes in glycosylation of acute-phase proteins in health and disease: Occurrence, regulation and function

  • Review
  • Published:
Glycosylation & Disease

Abstract

The pathophysiological variations in different glycoforms of acute-phase glycoproteins in serum most likely result from changes in the glycosylation process during their biosynthesis in the parenchymal cells of the liver. Biosynthesis in other cells or tissues may contribute, but in general appears to play a minor role. Inflammatory cytokines appear to regulate the process, but glycosylation changes are independent of protein synthesis. In addition, other humoral factors such as corticosteroids and growth factors are involved. The interplay of these factors is determined by the stage of the disease (e.g rheumatoid arthritis), the physiological situation (e.g. pregnancy), or directly or indirectly by extraneous factors such as drugs (e.g. ethanol). Information about the functional implications of the changes is limited, but some reports suggest that for α1-acid glycoprotein the changes might affect the operation of the immune system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Turner GA.N-Glycosylation of serum proteins in disease and its investigation using lectinsClin Chim Acta 1992:208; 149–71.

    Article  CAS  PubMed  Google Scholar 

  2. Nicollet I, Lebreton J-P, Fontaine M, Hiron M. Evidence for alpha1-acid glycoprotein populations of different pI values after Concanavalin A affinity chromatography. Study of their evolution during inflammation in man.Biochim Biophys Acta 1981:668; 235–45.

    Article  CAS  PubMed  Google Scholar 

  3. Thompson S, Turner GA. Elevated levels of abnormally-fucosylated haptoglobins in cancer sera.Br J Cancer 1987:56; 605–10.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. Pos O, Moshage HJ, Yap SH, et al. Effects of monocytic products, recombinant interleukin-1 and recombinant interleukin-6 on the glycosylation of α1-acid glycoprotein: studies with primary human hepatocyte cultures and rats.Inflammation 1989:13; 415–24.

    Article  CAS  PubMed  Google Scholar 

  5. Pos O, Van der Stelt ME, Wolbink G-J, et al. Changes in the serum concentration and the glycosylation of human α1-acid glycoprotein and α1-protease inhibitor in severely burned patients: relation to interleukin-6 levels.Clin Exp Immunol 1990:82; 579–82.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  6. Hiron M, Daveau M, Lebreton J-P. Microheterogeneity of α1-acid glycoproteins and α1-HS in cultured rat and human hepatocytes and in cultures of human hepatoma cells: role of cytokines in the uncoupling of changes in secretion and in ConA reactivities of acute-phase glycoproteins. In: Breborowicz J, Mackiewicz A, eds.Affinity Electrophoresis: Principles and Application. Boca Raton: CRC Press, 1992; 163–9.

    Google Scholar 

  7. Mackiewicz A, Sobieska M, Kapcinska M, et al. Different capabilities of monocytes from patients with systemic lupus erythematosus and rheumatoid arthritis to induce glycosylation alterations of acute phase proteinsin vivo.Ann Rheum Diseases 1991:51; 62–72.

    Google Scholar 

  8. Mackiewicz A, Rose-John S, Schooltink H, et al. Soluble human interleukin-6-receptor modulates interleukin-6 dependent N-glycosylation of α1-protease inhibitor secreted by Hep G2 cells.FEBS Lett 1992:306; 257–61.

    Article  CAS  PubMed  Google Scholar 

  9. Mackiewicz A, Laciak M, Gorny A, Baumann H. Leukaemia inhibitory factor, interferon gamma, and dexamethasone regulateN-glycosylation of α1-protease inhibitor.Eur J Cell Biol 1993:60; 331–6.

    CAS  PubMed  Google Scholar 

  10. Feelders RA, Vreugdenhil G, De Jong G Swaak AJG, Van Eijk HG. Transferrin microheterogeneity in rheumatoid arthritis.Rheumatol Int 1993:12; 195–9.

    Article  Google Scholar 

  11. Fournet B, Montreuil J, Strecker G, et al. Determination of the primary structures of 16 asialo-carbohydrate units derived from human plasma α1-acid glycoprotein by 360-MHz1H NMR spectroscopy and permethylation analysis.Biochemistry 1978:17; 5206–14.

    Article  CAS  PubMed  Google Scholar 

  12. Finne J, Krusius T. Structural features of the carbohydrate units of plasma glycoproteins.Eur J Biochem 1979:102; 583–8.

    Article  CAS  PubMed  Google Scholar 

  13. Yoshima H, Matsumoto A, Mizuochi T, Kawasaki T, Kobata A. Comparative study of the carbohydrate moieties of rat and human plasma α1-acid glycoproteins.J Biol Chem 1987:256; 8476–84.

    Google Scholar 

  14. Hercz A. The oligosaccharides of human α1-antitrypsin.Can J Biochem 198462; 19–27.

    Article  CAS  Google Scholar 

  15. Spik G, Bebruyne V, Montreuil J, Van Halbeek H, Vliegenthart JFG. Primary structure of two sialylated triantennary glycans from human serotransferrin.FEBS Lett 1985:183; 65–9.

    Article  CAS  PubMed  Google Scholar 

  16. Laine A, Hachulla E, Strecker G, Michalski J-C, Wieruszeski JM. Structure determination of the glycans of human serum α1-antichymotrypsin using1H-NMR spectroscopy and deglycosylation byN-glycanase.Eur J Biochem 1991:197; 209–15.

    Article  CAS  PubMed  Google Scholar 

  17. Bierhuizen MFA, De Wit M, Govers CARL, Koeleman C, Pos O, Van Dijk W. Glycosylation of three molecular forms of human α1-acid glycoprotein having different interactions with concanavalin A. Variations in the occurrence of di-, tri-, and tetraantennary glycans and the degree of sialylation.Eur J Biochem 1988:175; 387–94.

    Article  CAS  PubMed  Google Scholar 

  18. Thompson S, Guthrie D, Turner GA. Fucosylated forms ofα 1-antitrypsin that predict unresponsiveness to chemotherapy in ovarian cancer.Br J Cancer 1988:58; 589–93.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  19. Thompson S, Kelly CA, Griffiths ID, Turner GA. Abnormally fucosylated serum haptoglobins in patients with inflammatory joint disease.Clin Chim Acta 1989:184; 251–8.

    Article  CAS  PubMed  Google Scholar 

  20. De Graaf TW, Van der Stelt ME, Anbergen MG, Van Dijk W, Inflammation-induced expression of sialyl Lewis X-containing glycan structures on α1-acid glycoprotein (orosomucoid) in human sera.J Exp Med 1993:177; 657–66.

    Article  PubMed  Google Scholar 

  21. Thompson S, Dargan E, Griffiths ID, Kelly CA, Turner GA. The glycosylation of haptoglobin in rheumatoid arthritis.Clin Chim Acta 1993:220; 107–14.

    Article  CAS  PubMed  Google Scholar 

  22. Heegaard PMH, Heegaard NHH, Bøg-Hansen TC. Affinity electrophoresis for the characterization of glycoproteins. The use of lectins in combination with immunoelectrophoresis. In: Breborowicz J, Mackiewicz A, eds..Affinity Electrophoresis: Principles and Application. Boca Raton: CRC Press, 1992; 3–21.

    Google Scholar 

  23. Mallet B, Franc JL, Miquel M, Arnaud C. Effects of severe burns on glycan microheterogeneity of four acute-phase proteins.Clin Chim Acta 1987:167; 247–57.

    Article  CAS  PubMed  Google Scholar 

  24. Pawlowski T, Biczysko M, Solarewicz M, Mackiewicz S. Microheterogeneity of α1-acid glycoprotein in management of burns in children. In: Bog-Hansen TC, Fried J eds.Lectins: Biology, Biochemistry, Clinical Chemistry, Vol. 6. St Louis: Sigma Chemical, 1988; 491–6.

    Google Scholar 

  25. Pos O, Van Dijk W, Ladiges N, et al. Glycosylation of four acute-phase glycoproteins secreted by rat liver cellsin vivo andin vitro. Effects of inflammation and dexamethasone.Eur J Cell Biol 1988:46; 121–8.

    Article  CAS  PubMed  Google Scholar 

  26. Monnet D, Feger J, Biou D, et al.. Effect of phenobarbital on the oligosaccharide structure of rat α1-acid glycoprotein.Biochim Biophys Acta 1986:881; 10–14.

    Article  CAS  PubMed  Google Scholar 

  27. Monnet D, Durand D, Biou D, Feger J, Durand G.d-Galactosamine-induced liver injury: a rat model to study the heterogeneity of the oligosaccharide chains of α1-acid glycoprotein.J Clin Chem Clin Biol 1985:23; 249–53.

    CAS  Google Scholar 

  28. Pawlowski T, Mackiewicz SH, Mackiewicz A. Microheterogeneity of α1-acid glycoproteins in the detection of intercurrent infection in patients with rheumatoid arthritis.Arth Rheum 1989:32; 347–51.

    Article  CAS  Google Scholar 

  29. Mackiewicz A, Marcinkowska-Pieta R, Ballou S, Mackiewicz S, Kushner I: Microheterogeneity of α1-acid glycoprotein in the detection of intercurrent infection in systemic lupus erythemathosus.Arth Rheum 1987:30; 513–8.

    Article  CAS  Google Scholar 

  30. Biou D, Bauvy C, N'Guyen H, et al. Alterations of the glycan moiety of human α1-acid glycoprotein in late-term pregnancy.Clin Chim Acta 1991:204; 1–12.

    Article  CAS  PubMed  Google Scholar 

  31. Bleasby AJ, Knowles JC, Cooke NJ. Microheterogeneity of α1-acid glycoprotein: lack of discrimination between benign and malignant inflammatory disease of the lung.Clin Chim Acta 1985:150; 231–5.

    Article  CAS  PubMed  Google Scholar 

  32. Raynes J. Variations in the relative proportions of microheterogeneous forms of plasma glycoproteins in pregnancy and disease.Biomedicine 1982:36; 77–86.

    CAS  Google Scholar 

  33. Seta N, Tissot B, Forestier F, et al. Changes in α1-acid glycoprotein in serum concentrations and glycoforms in the developing human fetus.Clin Chim Acta 1991:203; 167–76.

    Article  CAS  PubMed  Google Scholar 

  34. Mackiewicz A, Pawlowski T, Mackiewicz-Pawlowski A, Wiktorowicz K, Mackiewicz S. Microheterogeneity forms of α1-acid glycoproteins as indicators of rheumatoid arthritis activity.Clin Chim Acta 1987:163; 185–90.

    Article  CAS  PubMed  Google Scholar 

  35. Jezeguel M, Seta NS, Corbic MM, Feger JM, Durand GM. Modifications of Concanavalin A patterns of α1-acid glycoprotein and α1-HS glycoprotein in alcoholic liver disease.Clin Chim Acta 1988:176; 49–57.

    Article  Google Scholar 

  36. Biou D, Chanton P, Konan D, et al. Microheterogeneity of carbohydrate moiety of human α1-acid glycoprotein in two benign liver diseases: alcoholic cirrhosis and acute hepatitis.Clin Chim Acta 1989:186; 59–66.

    Article  CAS  PubMed  Google Scholar 

  37. Serbource-Goguel Seta N, Durand G, Corbic M, Agneray J, Feger J. Alterations in relative proportions of microheterogeneous forms of human α1-acid glycoprotein in livers disease.J Hepatol 1986:2; 245–52.

    Article  Google Scholar 

  38. Koj A, Dubin A, Kasperczyk H, Bereta J, Gordon AH. Changes in the blood level and affinity to Concanavalin A of rat plasma·glycoproteins during inflammation and hepatoma growth.Biochem J 1982:206; 545–53.

    CAS  PubMed Central  PubMed  Google Scholar 

  39. Chandrasekaran EV, Davila M, Nixon D, Mendicino J. Structures of the oligosaccharide chains of two forms of α1-acid glycoprotein from liver metastasis of lung colon and breast tumours.Cancer Res 1984:44; 1557–67.

    CAS  PubMed  Google Scholar 

  40. Katnik I, Gerber J, Dobryszycka W. Microheterogeneity of α1-acid glycoprotein in the sera of patients with cancer or inflammatory states of the ovaries.Arch Immunol Therap Exp 1988:36; 1–6.

    CAS  Google Scholar 

  41. Mackiewicz A, Kushner I. Interferon beta2/B-cell stimulating factor 2/interleukin 6 affects glycosylation of acute phase proteins in human hepatoma cell lines.Scand J Immunol 1989:29; 265–71.

    Article  CAS  PubMed  Google Scholar 

  42. Yamashita K, Koide N, Endo T, Iwaki Y, Kobata A. Altered glycosylation of serum transferrin of patients with hepatocellular carcinoma.J Biol Chem 1989:264; 2415–23.

    CAS  PubMed  Google Scholar 

  43. Alm R, Eriksson S. Biosynthesis of abnormally glycosylated hepatoma secretory proteins in cell cultures.FEBS Lett 1985:190; 157–60.

    Article  CAS  PubMed  Google Scholar 

  44. Thompson S, Dargan E, Turner GA. Increased fucosylation and other carbohydrate changes in haptoglobin in ovarian cancer.Cancer Lett 1992:66; 43–8.

    Article  CAS  PubMed  Google Scholar 

  45. Mann AC, Record CO, Self CH, Turner GA. Monosaccharide composition of haptoglobin in liver diseases and alcohol abuse: large changes in glycosylation associated with alcoholic liver disease.Clin Chim Acta 1994: in press.

  46. Moule SK, Peak M, Thompson S, Turner GA, Studies of the sialylation and microheterogeneity of human serum α1-acid glycoprotein in health and disease.Clin Chim Acta 1987:166; 177–85.

    Article  CAS  PubMed  Google Scholar 

  47. Pawlowski T, Mackiewicz A. Minor microheterogeneity of alpha1-acid glycoprotein in rheumatoid arthritis. In: Baumann P, Eap CB, Muller WE, Tillement J-P, eds..Alpha1-acid Glycoprotein: Genetics, Biochemistry, Physiological Functions and Pharmacology. New York: A.R. Liss, 1989; 223–6.

    Google Scholar 

  48. Vesterberg O, Petren S, Schmidt D. Increased concentration of a transferrin variant after alcohol abuse.Clin Chim Acta 1984:141; 33–9.

    Article  CAS  PubMed  Google Scholar 

  49. Turner GA, Skillen AW, Buamah P et al. Relation between raised concentrations of fucose, sialic acid and acute phase proteins in serum from patients with cancer: choosing suitable serum glycoprotein markers.J Clin Pathol 1985:38; 588–92.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  50. Van Eijk HG, Van Noort WL, De Jong G, Koster JF. Human serum sialotransferrins in diseases.Clin Chim Acta 1987:165; 141–5.

    Article  PubMed  Google Scholar 

  51. Wieruszeski JM, Fournet B, Konan D, Biou D, Durand G. 400-MHz1H-NMR spectroscopy of fucosylated tetrasialyl oligosaccharides isolated from normal and cirrhotic α1-acid glycoprotein.FEBS Lett 1988:238; 390–4.

    Article  CAS  PubMed  Google Scholar 

  52. Biou D, Konan D, Feger J, et al. Alterations in the carbohydrate moiety of α1-acid glycoprotein purified from human cirrhotic ascites fluid.Biochim Biophys Acta 1987:913; 308–12.

    Article  CAS  PubMed  Google Scholar 

  53. Van der Linden ECM, De Graaf TW, Anbergen MG, et al. Expression of (sialyl)-Lewis X groups on human α1-acid glycoprotein in acute and chronic inflammation.Glycoconjugate J 1993:10; 316–7.

    Article  Google Scholar 

  54. Aoyagi Y, Suzuki Y, Isemura M, et al. The fucosylation index of α-fetoprotein and its usefulness in the early diagnosis of hepatocellular carcinoma.Cancer 1988:61; 769–74.

    Article  CAS  PubMed  Google Scholar 

  55. Campion B, Leger D, Wieruszeska J-M, Montreuil J, Spik G. Presence of fucosylated triantennary, tetraantennary and pentaantennary glycans in transferrin synthesized by the human hepatocarcinoma cell line Hep G2.Eur J Biochem 1989:184; 405–13.

    Article  CAS  PubMed  Google Scholar 

  56. Schreiber G, Aldred AR. Extrahepatic synthesis of acute-phase proteins. In: Mackiewicz A, Kushner I and Baumann H, eds.Acute-phase Proteins. Molecular Biology, Biochemistry and Clinical Applications. Boca Raton: CRC Press, 1993; 39–76.

    Google Scholar 

  57. Kushner I, Mackiewicz A. The acute phase response: an overview. In: Mackiewicz A, Kushner I and Baumann H, eds.Acute-phase Proteins. Molecular Biology, Biochemistry and Clinical Applications. Boca Raton: CRC Press, 1993; 3–19.

    Google Scholar 

  58. Ogata S, Misumi Y, Miki K, Ikehara Y. Structural analysis of the asparagine-linked oligosaccharides of rat haptoglobin metabolically labelled in a hepatocyte culture system.Eur J Biochem 1986:161; 315–20.

    Article  CAS  PubMed  Google Scholar 

  59. Mackiewicz A, Dewey MJ, Berger FC, Baumann H. Acute-phase mediated change in glycosylation of rat α1-acid glycoprotein in transgenic mice.Glycobiology 1991:1; 265–9.

    Article  CAS  PubMed  Google Scholar 

  60. Yamashita K, Taketa K, Nishi S, Fukushima K, Ohkura T: Sugar chains of human cord serum alpha-fetoprotein: characteristics ofN-linked sugar chains of glycoproteins produced by human liver and hepatocellular carcinomas.Cancer Res 1993:53; 2970–5.

    CAS  PubMed  Google Scholar 

  61. Carlson J, Eriksson S, Alm R, Kjellstrom T. Biosynthesis of abnormally glycosylated α1-antitrypsin by a human hepatoma cell line.Hepatology 1984:4; 235–41.

    Article  CAS  PubMed  Google Scholar 

  62. Koj A, Gauldie J, Baumann H. Biological perspective of cytokine and hormone networks. In: Mackiewicz A, Kushner I and Baumann H, eds.Acute-phase Proteins: Molecular Biology, Biochemistry and Clinical Applications. Boca Raton: CRC Press, 1993; 275–87.

    Google Scholar 

  63. Mackiewicz A, Kushner I, Transforming growth factor betal influences glycosylation of α1-protease inhibitor in human hepatoma cell lines.Inflammation 1990:14; 485–7.

    Article  CAS  PubMed  Google Scholar 

  64. van Dijk W, Pos O, Van der Stelt ME, et al. Inflammation-induced changes in expression and glycosylation of genetic variants of α1-acid glycoprotein (AGP): studies with human sera, primary cultures of human hepatocytes and transgenic mice.Biochem J 1991:276; 343–7.

    PubMed Central  PubMed  Google Scholar 

  65. van Dijk W, Van der Stelt ME, Salera A, Dente L. Effect of transgenic expression of human α1-acid glycoprotein (AGP) on the glycosylation of human and mouse AGP in various transgenic, mouse sera.Eur J Cell Biol 1991:55; 143–8.

    PubMed  Google Scholar 

  66. van Dijk W, Mackiewicz A. Control of glycosylation alterations of acute-phase glycoproteins. In: Mackiewicz A, Kushner I and Baumann H, eds.Acute-phase Glycoproteins: Molecular Biology, Biochemistry and Clinical Applications. Boca Raton: CRC Press, 1993; 559–80.

    Google Scholar 

  67. Lombart C, Sturgess J, Schachter H. The effect of turpentine-induced inflammation on rat liver glycosyltransferases and Golgi complex ultrastructure.Biochim Biophys Acta 1980:629; 1–12.

    Article  CAS  PubMed  Google Scholar 

  68. Kaplan HA, Woloski BMRNJ, Hellman M, Jamieson JC. Studies on the effect of inflammation on rat liver and serum sialyltransferase. Evidence that inflammation causes release of Galβ1→4GlcNAc α2→6-sialyltransferase from rat liver.J Biol Chem 1983:258; 11505–9.

    CAS  PubMed  Google Scholar 

  69. Van Dijk W, Boers W, Sala W, Lasthuis A-M, Mookerjea S. Activity and secretion of sialyltransferase in primary monolayer cultures of rat hepatocytes cultured with and without dexamethasone.Biochem Cell Biol 1986:64; 79–84.

    Article  PubMed  Google Scholar 

  70. Lammers G, Jamieson JC. The role of a cathepsin D-like activity in the release of Galβ1-4GlcNAc α2→6-sialyltransferase from rat liver Golgi membranes during the acute-phase response.Biochem J 1988:256; 623–31.

    CAS  PubMed Central  PubMed  Google Scholar 

  71. Budek W, Bunning P, Heinrich PC. Rat lung tissue is a site of α1-proteinase inhibitor synthesis: evidence by cell-free translation.Biochem Biophys Res Commun 1984:122; 394.

    Article  CAS  PubMed  Google Scholar 

  72. Van Furth R, Kramps JA, Diesselhorf-Den Dulk MMC. Synthesis of α1-antitrypsin by human monocytes.Clin Exp Immunol 1983:51; 551.

    PubMed Central  PubMed  Google Scholar 

  73. Rogers J, Kalsheker N, Wallis S, et al. The isolation of a clone for human α1-antitrypsin and the detection of α1-antitrypsin in mRNA from liver and leukocytes.Biochem Biophys Res Commun 1983:116; 375.

    Article  CAS  PubMed  Google Scholar 

  74. Gahmberg CG, Anderson LC. Leukocyte surface origin of human α1-acid glycoprotein (orosomucoid).J Exp Med 1978:148; 507–21.

    Article  CAS  PubMed  Google Scholar 

  75. Nakamura T, Board PG, Matsushita K, et al. α1-Acid glycoprotein expression in human leukocytes: possible correlation between α1-acid glycoprotein and inflammatory cytokines in rheumatoid arthritis.Inflammation 1993:17; 33–45.

    Article  CAS  PubMed  Google Scholar 

  76. Paulson JC, Colley KJ. Glycosyltransferases: structure, localization, and control of cell-type-specific glycosylation.J Biol Chem 1989:264; 17615–8.

    CAS  PubMed  Google Scholar 

  77. Schachter H. The yellow brick road to branched complexN-glycans.Glycobiology 1991:1; 453–61.

    Article  CAS  PubMed  Google Scholar 

  78. Van den Eijnden DH, Joziasse DH. Enzymes associated with glycosylation.Curr Opin Struct Biol 1993:3; 711–1.

    Article  Google Scholar 

  79. Nakao H, Nishikawa A, Karasuno T, et al. Regulation ofN-acetylglucosaminyltransferase III, IV and V activities and alteration of the surface oligosaccharide structure of a myeloma cell line by interleukin 6.Biochem Biophys Res Commun 1990:172; 1260–6.

    Article  CAS  PubMed  Google Scholar 

  80. De Vries T, Van den Eijnden DH. Occurrence and specificities of α3-fucosyltransferases.Histochem J 1992:24; 761–70.

    Article  PubMed  Google Scholar 

  81. Nemansky M and Van den Eijnden DH. Enzymatic characterization of CMP-NeuAc:Galβ1→4GlcNAc-R α2→3-sialyltransferase from human placenta.Glycoconjugate J 1993:10; 99–108.

    Article  CAS  Google Scholar 

  82. Woloski BMRNJ, Gospodarek E, Jamieson JC. Studies on monokines as mediators of the acutephase response. Effects on sialyltransferase, α1-acid glycoprotein and β-N-acetylhexosaminidase.Biochem Biophys Res Commun 1985:130; 30–6.

    Article  CAS  PubMed  Google Scholar 

  83. Jamieson JC, Kaplan HA, Woloski BMRNJ, Hellman M, Ham K. Glycoprotein biosynthesis during the acute-phase response to inflammation.Can J Biochem 1983:61; 1041–8.

    Article  CAS  Google Scholar 

  84. Hutton CW, Corfield AP, Clamp JR, Dieppe PA. The gut in the acute-phase response: changes in colonic and hepatic enzyme activity in response to dermal inflammation in the rat.Clin Sci 1987:73; 165–9.

    CAS  PubMed  Google Scholar 

  85. van Dijk W, Lasthuis AM, Trippelvitz LAW, Muilerman HG. Increased glycosylation capacity in regenerating rat liver is paralleled by decreased activities of CMP-N-acetylneuraminate hydrolase and UDP-galactose pyrophosphatase.Biochem J 1983:214; 1003–6.

    PubMed Central  PubMed  Google Scholar 

  86. Sarkar M, Moorkerjea S. Effect of dexamethasone on the synthesis of dolichol-linked saccharides and glycoproteins in hepatocytes prepared from control and inflamed rats.Biochem J 1985:227; 675–82.

    CAS  PubMed Central  PubMed  Google Scholar 

  87. Drechou A, Rouzeau J-D, Feger J, Durand G. Variations in the rate of secretion of different glycosylated forms of rat α1-acid glycoprotein.Biochem J 1989:263; 961–4.

    CAS  PubMed Central  PubMed  Google Scholar 

  88. Drechou A, Perez-Gonzalez N, Agneray J, Feger J, Durand G. Increased affinity to concanavalin A and enhanced secretion of α1-acid glycoprotein by hepatocytes isolated from turpentine-treated rats.Eur J Cell Biol 1989:50; 111–6.

    CAS  PubMed  Google Scholar 

  89. Myrset AH, Halvorsen B, Ording E, Helgeland L. The time courses of intracellular transport of some secretory proteins of rat liver are not affected by an induced acute phase response.Eur J Cell Biol 1993:60; 108–14.

    CAS  PubMed  Google Scholar 

  90. Berger EG, Kozdrowski I, Weiser MM, van den Eijnden DH, Schiphorst WECM. Human serum galactosyltransferase: distinction, separation and product identification of two galactosyltransferases activities.Eur J Biochem 1978:90; 213–22.

    Article  CAS  PubMed  Google Scholar 

  91. Canonico PG, Little JS, Powanda MC, Bostian KA, Beisel WR. Elevated glycosyltransferase activities in infected or traumatized hosts: nonspecific response to inflammation.Infect Immun 1980:29; 114–8.

    CAS  PubMed Central  PubMed  Google Scholar 

  92. Fraser IH, Coolbear T, Sarkar M, Moorkerjea S. Increase of sialyltransferase activity in the serum and liver of inflamed rats.Biochim Biophys Acta 1984:799; 102–5.

    Article  CAS  PubMed  Google Scholar 

  93. Hutchinson WL, Du M-Q, Johnson PJ, Williams R. Fucosyltransferases: differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis.Hepatology 1991:13; 683–8.

    Article  CAS  PubMed  Google Scholar 

  94. Yazawa S, Asao T, Nagamachi Y, Abbas SA, Matta KL. Tumor-related elevation of serum α1→3-l-fucosyltransferase activity in gastric cancer.J Cancer Res Clin Oncol 1989:115; 451–5.

    Article  CAS  PubMed  Google Scholar 

  95. Hutchinson WL, Du M-Q, Johnson PJ, Williams R. Fucosyltransferases: differential plasma and tissue alterations in hepatocellular carcinoma and cirrhosis.Hepatology 1991:13; 683–8.

    Article  CAS  PubMed  Google Scholar 

  96. Jezequel-Cuer M, N'Guyen-Cong H, Biou D, Durand G. Oligosaccharide specificity of normal human hepatocyte α1→3-fucosyltransferase.Biochim Biophys Acta 1993:1157; 252–8.

    Article  CAS  PubMed  Google Scholar 

  97. Thompson S, Cantwell BMJ, Matta KL, Turner GA. Parallel changes in the blood levels of abnormally-fucosylated haptoglobin and α1→3-fucosyltransferase in relationship to tumour burden: more evidence for a disturbance of fucose metabolism in cancer.Cancer Lett 1992:65; 115–21.

    Article  CAS  PubMed  Google Scholar 

  98. Zheng T, Ren ZY. Activities of serum enzymes in patients with viral hepatitis B, posthepatitic cirrhosis and hepatocellular carcinoma.Chin Med J Engl 1990:103; 729–34.

    CAS  PubMed  Google Scholar 

  99. Madiyalakan R, Yazawa S, Barlow JJ, Matta KL. Elevated serum α(1→3)-l-fucosyltransferase activity with synthetic low molecular weight acceptor in human ovarian cancer.Cancer Lett 1992:30; 201–5.

    Article  Google Scholar 

  100. Marshall JS, Williams S. Serum inhibitors of desialylated glycoprotein binding to hepatocyte membranes.Biochim Biophys Acta 1978:543; 41–52.

    Article  CAS  PubMed  Google Scholar 

  101. Serbourge-Goguel N, Corbic M, Erlinger S, et al. Measurement of serum α1-acid glycoprotein and α1-antitrypsin desialylation in liver disease.Hepatology 1983:3; 356–9.

    Article  Google Scholar 

  102. Sawamura T, Kawasoto S, Shiozaki Y, et al. Decrease of a hepatic binding protein specific for asialoglycoproteins with accumulation of serum asialoglycoproteins in galactosamine-treated rats.Gastroenterology 1981:81; 527–33.

    CAS  PubMed  Google Scholar 

  103. Burgess JB, Baunziger JU, Brown WR. Abnormal surface distribution of the human asialoglycoprotein receptor in cirrhosis.Hepatology 1992:15; 702–6.

    Article  CAS  PubMed  Google Scholar 

  104. Parivar K, Tolentino L, Taylor G, Oie S. Elimination of nonreactive and weakly reactive human α1-acid glycoprotein after induction of the acutephase response in rats.J Pharm Pharmacol 1992:44; 447–50.

    Article  CAS  PubMed  Google Scholar 

  105. Kobata A. Structures and functions of the sugar chains of glycoproteins.Eur J Biochem 1992:209; 483–501.

    Article  CAS  PubMed  Google Scholar 

  106. Varki A. Biological roles of oligosaccharides: all of the theories are correct.Glycobiology 1993:3; 97–130.

    Article  CAS  PubMed  Google Scholar 

  107. Shimizu Y, Newman W, Tanaka Y, Shaw S. Lymphocyte interactions with endothelial cells.Immunol Today 1992:13; 106–11.

    Article  CAS  PubMed  Google Scholar 

  108. Lasky LA. Selectins: interpreters of cell-specific carbohydrate information during inflammation.Science 1992:258; 964–9.

    Article  CAS  PubMed  Google Scholar 

  109. Schmid K, Nimberg RB, Kimura A, Yamaguchi H, Binette JP. The carbohydrate units of human plasma α1-acid glycoprotein.Biochim Biophys Acta 1977:492; 291–302.

    Article  CAS  PubMed  Google Scholar 

  110. Bennett M, Schmid K. Immunosuppression by human plasma α1-acid glycoprotein: importance of the carbohydrate moiety.Proc Natl Acad Sci USA 1980:77; 6109–13.

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  111. Chiu KM, Mortensen RF, Osmand AP, Gewurz H. Interactions of α1-acid glycoprotein with the immune system. I. Purification and effects upon lymphocyte responsiveness.Immunol 1979:32; 997–1005.

    Google Scholar 

  112. Costello M, Fiedel BA, Gewurz H. Inhibition of platelet aggregation by native and desialised α1-acid glycoprotein.Nature 1979:281; 677–8.

    Article  CAS  PubMed  Google Scholar 

  113. Dirienzo W, Stefanini GF, Miribel L, et al. α1-Acid glycoprotein on the membrane of human lymphocytes: possible involvement in cellular activation.Immunol Lett 1987:15; 167–70.

    Article  CAS  PubMed  Google Scholar 

  114. Pos O, Oostendorp RAJ, Van der Stelt ME, Scheper RJ, Van Dijk W. Con A-nonreactive human α1-acid glycoprotein (AGP) is more effective in modulation of lymphocyte proliferation than Con A-reactive AGP serum variants.Inflammation 1990:14; 133–41.

    Article  CAS  PubMed  Google Scholar 

  115. Lyutov AG, Aleshkin VA, Novicova LI, Pukhalsky AL. The influence of different forms of orosomucoid on immune reaction.Folia Histochem Cytobiol 1992:30; 211–2.

    CAS  PubMed  Google Scholar 

  116. Bories PN, Feger J, Benbernou N, et al. Prevalence of tri- and tetraantennary glycans of human α1-acid glycoproteins in release of macrophage inhibitor of interleukin-1 activity.Inflammation 1990:14; 315–23.

    Article  CAS  PubMed  Google Scholar 

  117. Perkins SJ, Kerchaert J-P, Loucheux-Lefebvre MH. The shapes of biantennary and tri/tetraantennary α1-acid glycoprotein by small-angle neutron and X-ray scattering.Eur J Biochem 1985:147; 525–31.

    Article  CAS  PubMed  Google Scholar 

  118. Walz G, Aruffo A, Kolanus W, Bevilacqua M, Seed B. Recognition by ELAM-1 of the sialyl-LeX determinant on myeloid and tumor cells.Science 1990:250; 1132–4.

    Article  CAS  PubMed  Google Scholar 

  119. Jadach J, Turner GA. An ultrasensitive technique for the analysis of glycoproteins using lectin blotting with enhanced chemiluminescence.Anal Biochem 1993:212; 293–5.

    Article  CAS  PubMed  Google Scholar 

  120. van der Linden ECM, De Graaf TW, Anbergen MG, et al. Preparative affinity electrophoresis of different glycoforms of serum glycoproteins: application for the study of inflammation induced expression of sialyl-Lewisx groups on α1-acid glycoprotein (orosomucoid).Glycosylation Disease 1994:1; 45–52.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

van Dijk, W., Turner, G.A. & Mackiewicz, A. Changes in glycosylation of acute-phase proteins in health and disease: Occurrence, regulation and function. Glycosylation & Disease 1, 5–14 (1994). https://doi.org/10.1007/BF00917463

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00917463

Keywords

Navigation