Skip to main content
Log in

The structural and functional heterogeneity of glutamic acid decarboxylase: A review

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

Studies of the GABA-synthetic enzyme glutamate decarboxylase (glutamic acid decarboxylase; GAD; E.C.4.1.1.15) began in 1951 with the work of Roberts and his colleagues. Since then, many investigators have demonstrated the structural and functional heterogeneity of brain GAD. At least part of this heterogeneity derives from the existence of two GAD genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Roberts, E., and Frankel, S. 1950. Gamma-Aminobutyric Acid in Brain: Its Formation From Glutamic Acid. J. Biol. Chem. 187:55–63.

    PubMed  Google Scholar 

  2. Awapara, J., Landua, A., Fuerst, R., and Seale, B. 1950. Free Gamma-Aminobutyric Acid in Brain. J. Biol. Chem. 187:35–39.

    PubMed  Google Scholar 

  3. Udenfriend, S. 1950. Identification of Gamma-Aminobutyric Acid in Brain by the Isotope Derivative Method. J. Biol. Chem. 187:65–69.

    PubMed  Google Scholar 

  4. Roberts, E., and Frankel, S. 1951. Glutamic Acid Decarboxylase in Brain. J. Biol. Chem. 188:789–795.

    PubMed  Google Scholar 

  5. Roberts, E., and Frankel, S. 1951. Further Studies of Glutamic Acid Decarboxylase in Brain. J. Biol. Chem. 190:505–512.

    PubMed  Google Scholar 

  6. Roberts, E., Younger, F., and Frankel, S. 1951. Influence of Dietary Pyridoxine on Glutamic Decarboxylase Activity of Brain. J. Biol. Chem. 191:277–285.

    PubMed  Google Scholar 

  7. Roberts, E., and Bregoff, H. 1953. Transamination of Gamma-Aminobutyric Acid and β-Alanine in Brain and Liver. J. Biol. Chem. 201:393–398.

    PubMed  Google Scholar 

  8. Bessman, S., Rossen, J., and Layne, E. 1953. Gamma-Aminobutyric Acid-Glutamic Acid Transamination in Brain. J. Biol. Chem. 201:383–391.

    Google Scholar 

  9. Roberts, E. 1956. Formation and Utilization of Gamma-Aminobutyric Acid in Brain. Pages 11–25, in Korey, S. (ed.), Progress in Neurobiology, Vol. 1, Hoeber-Harper, New York.

    Google Scholar 

  10. Baxter, C. 1976. Some Recent Advances in Studies of GABA Metabolism and Compartmentation. Pages 61–87,in Roberts, E., Chase, T., and Tower, D. (eds.), GABA in Nervous System Function, Raven Press, New York.

    Google Scholar 

  11. Erdo, S. and Wolff, J. 1990. Gamma-Aminobutyric Acid Out-side the Mammalian Brain. J. Neurochem. 54:363–372.

    PubMed  Google Scholar 

  12. Hayashi, T. and Nagai, K. 1956. Action of w-amino acids on the Motor Cortex of Higher Animals. Especially Gamma-Amino-Oxy-Butyric Acid as the Real Inhibitory Principle in Brain. Proc. XXth Int. Physiol. Congr., 410.

  13. Killam, K. F., and Bain, J. A. 1957. Convulsant Hydrazides 1: In Vitro and In Vivo Inhibition of Vitamin B6 Enzymes by Convulsant Hydrazides. J. Pharmacol. Exp. Ther. 119:255–262.

    PubMed  Google Scholar 

  14. Killam, K. F. 1957. Convulsant Hydrazides 2: Comparison of Electrical Changes and Enzyme Inhibition Induced by the Administration of Thiosemicarbazide. J. Pharmacol. Exp. Ther. 119:263–271.

    PubMed  Google Scholar 

  15. Bazemore, A. W., Elliott, K. A. C., and Florey, E. 1957. Isolation of Factor I. J. Neurochem. 1:334–339.

    PubMed  Google Scholar 

  16. Kuffler, S., and Edwards, C. 1958. Mechanism of Gamma Aminobutyric Acid (GABA) Action and its Relation to Synaptic Inhibition. J. Neurophysiol. 21:589–610.

    PubMed  Google Scholar 

  17. Dudel, J., Gryder, R., Kaji, A., Kuffler, S. W., and Potter, D. D. 1963. Gamma-Aminobutyric Acid and Other Blocking Compounds in Crustacea. J. Neurophysiol. 26:721–729.

    PubMed  Google Scholar 

  18. Kravitz, E. A., Kuffler, S. W., and Potter, D. D. 1963. Gamma-Aminobutyric Acid and Other Blocking Compounds in Crustacea. J. Neurophysiol. 26:739–753.

    PubMed  Google Scholar 

  19. Kravitz, E. A., and Potter, D. D. 1965. A Further Study of the Distribution of Gamma-Aminobutyric Acid Between Excitatory and Inhibitory Axons of the Lobster. J. Neurochem. 12:323–328.

    PubMed  Google Scholar 

  20. Kravitz, E. A., Molinoff, P. B., and Hall, Z. W. 1965. A Comparison of the Enzymes and Substrates of Gamma-Aminobutyric Acid Metabolism in Lobster Excitatory and Inhibitory Axons. Proc. Natl. Acad. Sci. U.S.A. 54:778–782.

    PubMed  Google Scholar 

  21. Orkand, P., and Kravitz, E. 1971. Localization of the Sites of Gamma-Aminobutyric Acid (GABA) Uptake in Lobster Nerve Muscle Preparations. J. Cell Biol. 49:75–89.

    PubMed  Google Scholar 

  22. Otsuka, J., Iversen, L. L., Hall, Z. W., and Kravitz, E. A. 1966. Release of Gamma-Aminobutyric Acid from Inhibitory Nerves of Lobster. Proc. Natl. Acad. Sci. U.S.A. 56:1110–1115.

    PubMed  Google Scholar 

  23. Takeuchi, A., and Takeuchi, N. 1969. A Study of the Action of Picrotoxin on the Inhibitory Neuromuscular Junction of the Crayfish. J. Physiol. 205:377–391.

    PubMed  Google Scholar 

  24. Molinoff, P. B., and Kravitz, E. A. 1968. The Metabolism of Gamma-Aminobutyric Acid (GABA) in the Lobster Nervous System-Glutamic Decarboxylase. J. Neurochem. 15:391–409.

    PubMed  Google Scholar 

  25. Grossfield, R. M., Yancey, S. W., and Baxter, C. F. 1984. Inhibitors of Crayfish Glutamic Acid Decarboxylase. Neurochem. Res. 9:947–963.

    PubMed  Google Scholar 

  26. Roberts, E. 1986. GABA: The Road to Neurotransmitter Status. Pages 1–39, in Olsen, R. W. and Venter, C. J. (eds.), Benzodiazepine/GABA Receptors and Chloride Channels: Structural and Functional Properties, Alan R. Liss, Inc., New York.

    Google Scholar 

  27. Roberts, E. 1984. Gamma-Aminobutyric Acid (GABA): From Discovery to Visualization of GABAergic Neurons in the Vertebrate Nervous System. Pages 1–25,in Bowery, N. G. (ed.), Actions and Interactions of GABA and Benzodiazepines, Raven Press, New York.

    Google Scholar 

  28. Wu, J-Y., Matsuda, T., and Roberts, E., 1973. Purification and Characterization of Glutamate Decarboxylase from Mouse Brain. J. Biol. Chem. 248:3029–3034.

    PubMed  Google Scholar 

  29. Matsuda, T., Wu, J-Y., and Roberts, E. 1973. Electrophoresis of Glutamic Acid Decarboxylase (EC4.1.1.15) from Mouse Brain in Sodium Dodecyl Sulphate Polyacrylamide Gels. J. Neurochem. 21:167–172.

    PubMed  Google Scholar 

  30. Matsuda, T., Wu, J-Y., and Roberts, E. 1973. Immunochemical Studies on Glutamic Acid Decarboxylase (EC4.1.1.15) from Mouse Brain. J. Neurochem. 21:159–166.

    PubMed  Google Scholar 

  31. Saito, K., Barber, R., Wu, J-Y., Matsuda, T., Roberts, E., and Vaughn, J. 1974. Immunohistochemical Localization of Glutamate Decarboxylase in Rat Cerebellum. Proc. Nat. Acad. Sci. U.S.A. 71:269–273.

    Google Scholar 

  32. McLaughlin, B., Wood, J., Saito, K., Barber, R., Vaughn, J., Roberts, E., and Wu, J-Y. 1974. The Fine Structural Localization of Glutamate Decarboxylase in Synaptic Terminals of Rodent Cerebellum. Brain Res. 76:377–391.

    PubMed  Google Scholar 

  33. Ribak, C. E., Vaughn, J. E., Saito, K., Barber, R., and Roberts, E. 1976. Glutamate Decarboxylase Localization in Neurons of the Olfactory Bulb. Brain Res. 126:1–18.

    Google Scholar 

  34. Houser, C. R., Vaughn, J. E., Barber, R. P., and Roberts, E. 1980. GABA Neurons are the Major Cell Type of the Nucleus Reticularis Thalami. Brain Res. 200:341–354.

    PubMed  Google Scholar 

  35. Barber, R. P., Vaughn, J. E., Saito, K., McLaughlin, B. J., and Roberts, E. 1978. GABAergic Terminals are Presynaptic to Primary Afferent Terminals in the Substantia Gelatinosa of the Rat Spinal Cord. Brain Res. 141:35–55.

    PubMed  Google Scholar 

  36. Haber, B., Kuriyama, K., and Roberts, E. 1970.l-glutamic Acid Decarboxylase: A New Type in Glial Cells and Human Brain Gliomas. Science 168:598–599.

    PubMed  Google Scholar 

  37. Haber, B., Kuriyama, K., and Roberts, E. 1970. An Anion Stimulatedl-glutamic Acid Decarboxylase in Non-Neural Tissues. Biochem. Pharm. 19:1119–1136.

    Google Scholar 

  38. Walsh, J., and Clark, J. B. 1976. Evidence Against the Existence of Glutamate Decarboxylase (II) in Rat Brain Mitochondria. J. Neurochem. 26:1307–1309.

    PubMed  Google Scholar 

  39. Drummond, R. J., and Phillips, A. T. 1974.l-glutamic Acid Decarboxylase in Non-Neural Tissues of the Mouse. J. Neurochem. 23:1207–1213.

    PubMed  Google Scholar 

  40. Martin, D., and Miller, L. 1976. Comment on the Evidence for GAD II. Pages 57–58,in Roberts, E., Chase, T. N., and Tower, D. B. (eds.), GABA in Nervous System Function, Raven Press, New York.

    Google Scholar 

  41. Maitre, M., Blindermann, J. M., Ossola, L., and Mandel, P. 1978. Comparison of Structures ofl-glutamate Decarboxylases From Human and Rat Brains. Biochem. Biophys. Res. Comm. 85:885–890.

    PubMed  Google Scholar 

  42. Spink, D. C., Porter, T. G., Wu, S. J., and Martin, D. L. 1987. Kinetically Different, Multiple Forms of Glutamate Decarboxylase in Rat Brain. Brain Res. 421:235–244.

    PubMed  Google Scholar 

  43. Denner, L. A., Wei, S. C., Lin, C.-T., and Wu, J-Y. 1987. Brainl-glutamate Decarboxylase: Purification and Subunit Structure. Proc. Natl. Acad. Sci. U.S.A. 84:668–672.

    PubMed  Google Scholar 

  44. Chang, Y-C., and Gottlieb, D. I. 1988. Characterization of the Proteins Purified with Monoclonal Antibodies to Glutamic Acid Decarboxylase. J. Neurosci. 8:2123–2130.

    PubMed  Google Scholar 

  45. Spink, D. C., Wu, S. J., and Martin, D. L. 1982. Multiple Forms of Glutamate Decarboxylase in Porcine Brain. J. Neurochem. 40:1113–1119.

    Google Scholar 

  46. Spink, D. C., Porter, T. G., Wu, S. J., and Martin D. L. 1985. Characterization of Three Kinetically Distinct Forms of Glutamate Decarboxylase from Pig Brain. Biochem. J. 231:695–703.

    PubMed  Google Scholar 

  47. Heinamaki, A. A., Malila, S. I., Tolonen, K. M., Valkonen, K. H., and Piha, R. S. 1983. Resolution and Purification of Taurine- and GABA-Synthesizing Decarboxylases from Calf Brain. Neurochem. Res. 8:207–218.

    PubMed  Google Scholar 

  48. Blindermann, J-M., Maitre, M., Ossola, L., and Mandel, P. 1978. Purification and Some Properties of L-glutamate Decarboxylase from Human Brain. Eur. J. Biochem. 86:143–152.

    PubMed  Google Scholar 

  49. Wu, J-Y., Lin, J. Y., Evans, D. M., Lin, H. S., and Lin, C. T. 1987. Multiplicity of Brainl-glutamate Decarboxylase and Choline Acetyltransferase. Soc. Neurosci. Abstr. 13:952.

    Google Scholar 

  50. Legay, F., Pelhate, S., and Tappaz, M. L. 1986. Phylogenesis of Brain Glutamic Acid Decarboxylase from Vertebrates: Immunochemical Studies. J. Neurochem. 46:1478–1486.

    PubMed  Google Scholar 

  51. Kaufman, D., McGinnis, J. F., Krieger, N. R., and Tobin, A. J. 1986. Brain Glutamate Decarboxylase Cloned in Lambda-gt11: Fusion Protein Produces Gamma-Aminobutyric Acid. Science 232:1138–1140.

    PubMed  Google Scholar 

  52. Oertel, W. H., Schmechel, D. E., Tappaz, M. L., and Kopin, I. J. 1981. Production of a Specific Antiserum to Rat Brain Glutamic Acid Decarboxylase by Injection of an Antigen-Antibody Complex. Neuroscience 6:2689–2700.

    PubMed  Google Scholar 

  53. Oertel, W. H., Schmechel, D. E., Mugnaini, E., Tappaz, M. L., and Kopin, I. J. 1981. Immunocytochemical Localization of Glutamate Decarboxylase in Rat Cerebellum with a New Antiserum. Neuroscience 6:2715–2735.

    PubMed  Google Scholar 

  54. Katarova, Z., Szabo, G., Mugnaini, E., and Greenspan, R. J. 1990. Molecular Identification of the 62 kd Form of Glutamic Acid Decarboxylase from the Mouse. Euro. J. of Neurosci. 2:190–202.

    Google Scholar 

  55. Kaufman, D., Hauser, C., and Tobin, A. Two forms of the GABA Synthetic Enzyme Glutamate Decarboxylase have Distinct Intraneuronal Distributions and Cofactor Interactions. (submitted).

  56. Legay, F., Henry, S., and Tappaz, M. 1987. Evidence for Two Distinct Forms of Native Glutamic Acid Decarboxylase in Rat Brain Soluble Extract: An Immunoblotting Study. J. Neurochem. 48:1022–1026.

    PubMed  Google Scholar 

  57. Wu, J-Y., Denner, J. A., Wei, S. C., Lin, C-T., Song, G-X, Xu, Y. F., Liu, J. W., and Lin, H. S. 1986. Production and Characterization of Polyclonal and Monoclonal Antibodies to Rat Brain L-Glutamate Decarboxylase. Brain Res. 373:1–14.

    PubMed  Google Scholar 

  58. Wuenschell, C. W., Fisher, P. S., Kaufman, D. L., and Tobin, A. J. 1986. In-situ hybridization to localize mRNA encoding the neurotransmitter synthetic enzyme glutamate decarboxylase in mouse cerebellum. Proc. Natl. Acad. Sci. U.S.A. 83:6193–6197.

    PubMed  Google Scholar 

  59. Julien, J. F., Legay, F., Duman, S., Tappaz, M., and Mallet, J. 1987. Molecular cloning Expression and In Situ Hybridization of Rat Brain Glutamic Acid Decarboxylase Messenger RNA. Neuro. Ltrs. 73:173–180.

    Google Scholar 

  60. Jackson, F. R., Newby, L. M., and Kulkarni, S. J. 1990.Drosophila GABAergic Systems: Sequence and Expression of Glutamic Acid Decarboxylase. J. Neurochem. 54:1068–1078.

    PubMed  Google Scholar 

  61. Julien, J-F., Samama, P., and Mallet, J. 1990. Rat Brain Glutamic Acid Decarboxylase Sequence Deduced from a Cloned cDNA. J. Neurochem. 54:703–705.

    PubMed  Google Scholar 

  62. Kobayashi, Y., Kaufman, D., and Tobin, A. J. 1987. Glutamic Acid Decarboxylase cDNA: Nucleotide Sequence Encoding an Enzymatically Active Fusion Protein. J. Neurosci. 7:2768–2772.

    PubMed  Google Scholar 

  63. Brilliant, M. H., Szabo, G., Katarova, Z., Glaser, T. A., Greenspan, R. J., and Houseman, D. E. 1990. Sequences homologous to glutamic acid decarboxylase (GAD) cDNA are present on mouse chromosome 2 and 10. Geuomics (in press).

  64. Martin, D. L., Martin, S. B., and Wu, S. J. 1989. Active-site Labeling and Subunit Structure of Glutamate Decarboxylase. Trans Amer. Soc. Neurochem. 21:274.

    Google Scholar 

  65. Erlander, M. G., Tillakaratne, N. J. K., Feldblum, S. Patel, N., and Tobin, A. J. 1990. Two Genes Encode Distinct Glutamate Decarboxylases with Different Responses to Pyridoxal Phosphate. (submitted).

  66. Wood, J. D. 1975. The Role of Gamma-Aminobutyric Acid in the Mechanism of Seizures. Prog. in Neurobiol. 5:77–95.

    Google Scholar 

  67. Wood, J. D., Russell, M. P., Kurylo, E., and Newstead, J. D. 1979. Stability of Synaptosomal GABA Levels and Their Use in Determining the In Vivo Effects of Drugs: Convulsant Agents. J. Neurochem. 33:61–68.

    PubMed  Google Scholar 

  68. Sarhan, S., and Seiler, N. 1979. Metabolic Inhibitors and Subcellular Distribution of GABA. J. Neurosci. Res. 4:399–421.

    PubMed  Google Scholar 

  69. Tapia, R. 1983. Regulation of Glutamate Decarboxylase Activity. Pages 113–128, in Glutamine, Glutamate and GABA in the Central Nervous System, Alan R. Liss, Inc., New York.

    Google Scholar 

  70. Tapia, R., and Pasantes, H. 1970. Relationships Between Pyridoxal Phosphate Availability, Activity of Vitamin B6-Dependent Enzymes and Convulsions. Brain Res. 29:111–122.

    Google Scholar 

  71. Itoh, M., and Uchimura, H. 1981. Regional Differences in Co-factor Saturation of Glutamate Decarboxylase (GAD) in Discrete Brain Nuclei of the Rat. Neurochem. Res. 6:1283–1289.

    PubMed  Google Scholar 

  72. Nitsch, C. 1980. Regulation of GABA Metabolism in Discrete Rabbit Brain Regions under Methoxypridoxine-Regional Differences in Cofactor Saturation and the Preictal Activation of Glutamate Decarboxylase Activity. J. Neurochem. 34:822–830.

    PubMed  Google Scholar 

  73. Denner, L. A., and Wu, J-Y. 1985. Two Forms of Rat Brain Glutamic Acid Decarboxylase Differ in Their Dependence on Free Pyridoxal Phosphate. J. Neurochem. 44:957–965.

    PubMed  Google Scholar 

  74. Perez de la Mora, M., Velasco-Feria, A., and Tapia, R. 1973. Pyridoxal Phosphate and Glutamate Decarboxylase in Subcellular Particles of Mouse Brain and Their Relationship to Convulsions. J. Neurochem. 20:1575–1587.

    PubMed  Google Scholar 

  75. Tapia, R., Pasantes, H., and Massieu, G. 1970. Some Properties of Glutamate Decarboxylase and the Content of Pyridoxal Phosphate in Brains of Three Vertebrate Species. J. Neurochem. 17:921–925.

    PubMed  Google Scholar 

  76. Miller, L. P., Martin, D. L., Mazumder, A., and Walters, J. R. 1978. Studies on the Regulation of GABA Synthesis: Substrate-Promoted Dissociation of Pyridoxal-5′-Phosphate from GAD. J. Neurochem. 30:361–369.

    PubMed  Google Scholar 

  77. Porter, T. G., Spink, D. C., Martin, S. B., and Martin, D. L. 1985. Transaminations Catalyzed by Brain Glutamate Decarboxylase. Biochem. J. 231:705–712.

    PubMed  Google Scholar 

  78. Miller, L. P., and Walters, J. R. 1979. Effects of Depolarization on Cofactor Regulation of Glutamic Acid Decarboxylase in Substantia Nigra Synaptosomes. J. Neurochem. 33:533–539.

    PubMed  Google Scholar 

  79. Gold, B. I., and Roth, R. H. 1979. Glutamate Decarboxylase Activity in Striatal Slices: Characterization of the Increase Following Depolarization. J. of Neurochem. 32:883–888.

    Google Scholar 

  80. Bayon, A., Possani, L. D., and Tapia, R. 1977. Kinetics of Brain Glutamate Decarboxylase. Inhibition Studies with N-(5′-phosphopyridoxyl) Amino Acids. J. Neurochem. 29:513–518.

    PubMed  Google Scholar 

  81. Bayon, A., Possani, L. D., Tapia, M., Tapia, R. 1977. Kinetics of Brain Glutamate Decarboxylase Interactions with Glutamate, Pyridoxal 5′-Phosphate and Glutamate-Pyridoxal 5′-Phosphate Schiff Base. J. of Neurochem. 29:519–525.

    Google Scholar 

  82. Bayon, A., Possani, L. D., and Tapia, R. 1977. Kinetics of Brain Glutamate Decarboxylase. Inhibition Studies with N-(5′-Phosphopyridoxyl) Amino Acids. J. Neurochem. 29:513–517.

    PubMed  Google Scholar 

  83. Miller, L. P., Walters, J. R., Eng, N., and Martin, D. L. 1980. Glutamate Holodecarboxylase Levels and the Regulation of GABA Synthesis. Brain Res. Bull. 5:89–94.

    Google Scholar 

  84. Martin, D. L., Wu, S. J., and Martin, S. B. 1990. Glutamate-dependent Active-site Labeling of Brain Glutamate Decarboxylase. J. Neurochem. (in press).

  85. Martin, D. L. 1987. Regulatory Properties of Brain Glutamate Decarboxylase. Cell. Mol. Neurobiol. 7:237–253.

    PubMed  Google Scholar 

  86. Martin, D. L., and Martin, S. B. 1982. Effect of Nucleotides and Other Inhibitors on the Inactivation of Glutamate Decarboxylase. J. Neurochem. 39:1001–1008.

    PubMed  Google Scholar 

  87. Tursky, T., and Lassanovo, M. 1978. Inhibition of Different Molecular Forms of Brain Glutamate Decarboxylase (GAD) with ATP. J. Neurochem. 30:903.

    PubMed  Google Scholar 

  88. Iadorla, M. J., and Gale, K. 1981. Cellular Compartments of GABA in Brain and Their Relationship to Anticonvulsant Activity. Mol. Cell. Biochem. 39:305–330.

    PubMed  Google Scholar 

  89. Shepard, G. M. 1972. Synaptic Organization of the Mammalian Olfactory Bulb. Physiol. 52:864–917.

    Google Scholar 

  90. Feldblum, S. 1990. (Manuscript in Preparation).

  91. Quinn, M. R., and Cagan, R. H. 1980. Subcellular Distribution of Glutamate Decarboxylase in Rat Olfactory Bulb: High Content in Dendrodendritic Synaptosomes. J. Neurochem. 35:583–590.

    PubMed  Google Scholar 

  92. Vincent, S. R., Hökfelt, T., Wu, J-Y., Elde, R. P., Morgan, L. M., and Kimmel, J. R. 1983. Immunohistochemical Studies of the GABA System in the Pancreas. Neuroendocrinology 36:197–204.

    PubMed  Google Scholar 

  93. Goodyer, P. R., Mills, M., and Scriver, C. R. 1982. Properties of Gamma-Aminobutyric Acid Synthesis by Rat Renal Cortex. Biochem. Biophys. Acta 716:348–357.

    PubMed  Google Scholar 

  94. Erdo, S. L., Joo, F., and Wolff, J. R. 1989. Immunohistochemical Localization of Glutamate Decarboxylase in the Rat Oviduct and Ovary; Further Evidence for Non-Neural GABA Systems. Cell Tissue Res. 255:431–434.

    PubMed  Google Scholar 

  95. Scriver, C. R., and Whelan, D. T. 1969. Glutamic Acid Decarboxylase (GAD) in Mammalian Tissue Outside the Central Nervous System and its Possible Relevance to Hereditary Vitamin B6 Dependency with Seizures. Ann. NY Acad. Sci. 166:83–96.

    PubMed  Google Scholar 

  96. Tower, D. B. 1976. GABA and Seizures: Clinical Correlates in Man. Pages 461–478,in Roberts, E., Chase, T. N., and Tower, D. B. (eds.), GABA in Nervous System Function, Raven Press, New York.

    Google Scholar 

  97. Meeley, M. P., and Martin, D. L. 1983. Inactivation of Brain Glutamate Decarboxylase and the Effects of Adenosine 5′-Triphosphate and Inorganic Phosphate. Cell. Mol. Neurobiol. 3:39–54.

    PubMed  Google Scholar 

  98. Porter, T. G., and Martin, D. L. 1987. Rapid Inactivation of Brain Glutamate Decarboxylase by Aspartate. J. Neurochem. 48:67–72.

    PubMed  Google Scholar 

  99. Porter, T. G., and Martin, D. L. 1984. Evidence for Feedback Regulation of Glutamate Decarboxylase by Gamma-Aminobutyric Acid. J. Neurochem. 43:1464–1467.

    PubMed  Google Scholar 

  100. Martin, S. B., and Martin, D. L. 1979. Stimulation by Phosphate of the Activation of Glutamate Apodecarboxylase by Pyridoxyl-5′-Phosphate and its Implications for the Control of GABA Synthesis. J. Neurochem. 33:1275–1283.

    PubMed  Google Scholar 

  101. Miller, L. P., Walters, J. R., and Martin, D. L. 1977. Post-Mortem Changes Implicate Adenine Nucleotides and Pyridoxal-5′-Phosphate in Regulation of Brain Glutamate Decarboxylase. Nature 266:847–848.

    PubMed  Google Scholar 

  102. Martin, D. L., Martin, S. B., Wu, S. J., and Esplna, N. 1990. The Apoenzyme of GAD is Present Predominantly as the 63-kDa Form of GAD in Synaptosomes and Rat Brain. Soc. Neurosci. Abstr. (in press).

  103. McLaughlin, B. J., Wood, J. G., Saito, K., Roberts, E., and Wu, J-Y. 1975. The Fine Structural Localization of Glutamate Decarboxylase in Developing Axonal Processes and Presynaptic Terminals of Rodent Cerebellum. Brain Res. 85:355–371.

    PubMed  Google Scholar 

  104. Fonnum, F. 1968. The Distribution of Glutamate Decarboxylase and Aspartate Transaminase in Subcellular Fractions of Rat and Guinea-Pig Brain. Biochem. J. 106:401–417.

    PubMed  Google Scholar 

  105. Covarrubias, M., and Tapia, R. 1978. Calcium-Dependent Binding of Brain Glutamate Decarboxylase to Phospholipid Vesicles. J. Neurochem. 31:1209–1214.

    PubMed  Google Scholar 

  106. Covarrubias, M., and Tapia, R. 1979. Brain Glutamate Decarboxylase: Properties of Its Calcium-Dependent Binding to Liposomes and Kinetics of the Bound and the Free Enzyme. J. Neurochem. 34:1682–1688.

    Google Scholar 

  107. Westhead, E. W. 1987. Lipid Composition and Orientation in Secretory Vesicles. Ann. NY Acad. Sci. 493:92–99.

    PubMed  Google Scholar 

  108. Schultz, A. M., Henderson, L. E. and Orszlan, S. 1988. Fatty Acylation of Proteins. Ann. Rev. Cell Biol. 4:611–647.

    PubMed  Google Scholar 

  109. Towler, D. A., and Gordon, J. I. 1988. The Biology and Enzymology of Eukaryotic Protein Acylation. Ann. Rev. Biochem. 57:69–99.

    PubMed  Google Scholar 

  110. Doering, T. L., Masterson, W. J., Hart, G. W., and Englund, P. T. 1990. Biosynthesis of Glycosyl Phosphatidylinositol Membrane Anchors. J. Biol. Chem. 265:611–614.

    PubMed  Google Scholar 

  111. Hooper, N. M., and Turner, A. J. 1988. Ectoenzymes of the Kidney Microvillar Membrane. Biochem. J. 250:865–869.

    PubMed  Google Scholar 

  112. Alberts, B., Bray, D., Lewis, J., Raff, M., Roberts, K. and Watson, J. D. 1989. Molecular Biology of The Cell. Page 418. Garland Publishing, Inc., New York and London.

    Google Scholar 

  113. Benfenati, F., Greengard, P., Brunner, J., and Bahler 1989. Electrostatic and Hydrophobic Interactions of Synapsin I and Synapsin I Fragments with Phospholipid Bilayers. J. Cell Biol. 108:1851–1862.

    PubMed  Google Scholar 

  114. Segovia, J., Tillakaratne, N. J. K. T., Whelan, K., Tobin, A. J., and Gale, K. 1990. Parallel increases in Striatal Glutamic Acid Decarboxylase Activity and mRNA Levels in Rats with Lesions of the Nigrostriatal Pathway. Brain Res., 529:345–348.

    PubMed  Google Scholar 

  115. Litwak, J., Mercugliano, M., Chesselet, M-F., and Oltmans, G. A. 1990. Increased Glutamic Acid Decarboxylase (GAD) mRNA and GAD Activity in Cerebellar Purkinje Cells Following Lesion-Induced Increases in Cell Firing. Neurosci. Ltrs. 116:179–183.

    Google Scholar 

  116. Batini, C., Billar, J. M., and Daniel, H. 1985. Long Term Modification of Cerebellar Inhibition After Inferior Olive Degeneration. Exp. Brain Res. 59:404–409.

    PubMed  Google Scholar 

  117. Benedetti, F., Montarolo, P. G. and Rabacchi, S. 1984 Inferior Olive Lesion Induces Long-Lasting Functional Modification in the Purkinje Cells. Exp. Brain Res. 55:368–371.

    PubMed  Google Scholar 

  118. Feldblum, S., Ackermann, R. F., and Tobin, A. J. 1990. Long-term increase of Glutamate Decarboxylase mRNA in a rat model of temporal lobe epilepsy. Neuron, 5:361–371.

    PubMed  Google Scholar 

  119. Sambrook, J., Fritsch, E. F., and Maniatis, T. Molecular Cloning. 1989. pp. 16.3–16.73, Cold Spring Harbor Laboratory Press, Cold Spring Harbor.

    Google Scholar 

  120. Wyborski, R. J., Bond, R. W., and Gottlieb, D. I., 1990. Developmentally Regulated Alternative Splicing Produces a Truncated Form of Glutamic Acid Decarboxylase in the Rat Embryo. J. Cell. Biochem., suppl. 14F:56.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

In honor of the 70th birthday of Dr. Eugene Roberts

Rights and permissions

Reprints and permissions

About this article

Cite this article

Erlander, M.G., Tobin, A.J. The structural and functional heterogeneity of glutamic acid decarboxylase: A review. Neurochem Res 16, 215–226 (1991). https://doi.org/10.1007/BF00966084

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966084

Key Words

Navigation