Skip to main content
Log in

Sequential damage in mitochondrial complexes by peroxidative stress

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The biochemical characteristics of the electron transfer chain are evaluated in purified non-synaptic (“free”) mitochondria from the forebrain of 60-week-old rats weekly subjected to peroxidative stress (once, twice, or three times) by the electrophilic prooxidant 2-cyclohexene-1-one. The following parameters are evaluated: (a) content of respiratory components, namely ubiquinone, cytochrome b, cytochrome c1, cytochrome c; (b) specific activity of enzymes, namely citrate synthase, succinate dehydrogenase, rotenone-sensitive NADH: cytochrome c reductase, cytochrome oxidase; (c) concentration of reduced glutathione (GSH). Before the first peroxidative stress induction, the rats are administered for 8 weeks by intraperitoneal injection of vehicle, papaverine, δ-yohimbine, almitrine or hopanthenate. The rats are treated also during the week(s) before the second or third peroxidative stress. The cerebral peroxidative stress induces: (a) initially, a decrease in brain GSH concentration concomitant with a decrease in the mitochondrial activity of cytochrome oxidase of aa3-type (complex IV), without changes in ubiquinone and cytochrome b populations; (b) subsequently, an alteration in the transfer molecule cytochrome c and, finally, in rotenone-sensitive NADH-cytochrome c reductase (complex I) and succinate dehydrogenase (complex II). The selective sensitivity of the chain components to peroxidative stress is supported by the effects of the concomitant subchronic treatment with agents acting at different biochemical steps. In fact, almitrine sets limits to its effects at cytochrome c content and aa3-type cytochrome oxidase activity, while δ-yohimbine sets limits to its effects at the level of tricarboxylic acid cycle (citrate synthase) and/or of intermediary between tricarboxylic acid cycle and complex II (succinate dehydrogenase). The effects induced by sequential peroxidative stress and drug treatment are supportive of the hypothesis that leakage of electrons (as a mandatory side-effect of the normal flux of electrons from both NADH and succinate to molecular oxygen) would be due to alteration in both availability of GSH and the content of components in the respiratory chain associated to energy-transducing system. In this field there is a cascade of derangements involving, at the beginning, the complex IV and, subsequently, other chain components, including cytochrome c and, finally, complexes II and I.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Burns, R. S., Markey, S. P., Phillips, J. M., and Chieuh, C. C. 1984. The neurotoxicity of 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine in the monkey and man. Can. J. Neurol. Sci. 11:166–168.

    PubMed  Google Scholar 

  2. Langston J. W., Forno, L. S., Rebert, C. D., and Irwin, I. 1984. Selective nigral toxicity after systemic administration of MPTP in the squirrel monkey. Brain Res. 292:390–394.

    PubMed  Google Scholar 

  3. Javitch, J. A., D'Amato, T. J., Strittmatter, S. M., and Snyder, S. H. 1985. Parkinsonism-inducing neurotoxin MPTP: uptake of the metabolite MPP+ by dopamine neurons explains selective toxicity. Proc. Natl. Acad. Sci. USA 82:2173–2177.

    PubMed  Google Scholar 

  4. Birkmayer, W., and Riederer, P. 1985. Die Parkinson-Krankheit: Biochemie, Klinik, Therapie. 2 Auflage, Springer-Verlag, Wien-New York.

    Google Scholar 

  5. Jellinger, K. 1989. Pathology of Parkinson's syndrome. Pages 47–122,in Calne, D. B. (ed.), Handbook of Experimental Pharmacology, vol. 88, Springer-Verlag, Berlin.

    Google Scholar 

  6. Schapira, A. H. V., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B., and Marsden, C. D. 1989. Mitochondrial complex I deficiency in Parkinson's disease. Lancet i:1269.

    Google Scholar 

  7. Schapira, A. H. V., Cooper, J. M., Dexter, D., Jenner, P., Clark, J. B., and Marsden, C. D. 1990. Mitochondrial complex I deficiency in Parkinson's disease. J. Neurochem. 54:823–827.

    PubMed  Google Scholar 

  8. Mizuno, Y., Ohta, S., Tanaka, M., Takamiya, S., Suzuki, K., Sato, T., Oya, H., Ozawa, T., and Kagawa, Y. 1989. Deficiencies in complex I subunits of the respiratory chain in Parkinson's disease. Biochem. Biophys. Res. Commun. 163:1450–1455.

    PubMed  Google Scholar 

  9. Mizuno, Y., Suzuki, K., and Ohta, S. 1990. Post mortem changes in mitochondrial respiratory enzymes in brain and a preliminary observation in Parkinson's disease. J. Neurol. Sci. 96:49–57.

    PubMed  Google Scholar 

  10. Denton, T., and Howard, B. D. 1987. A dopaminergic cell line variant to the neurotoxin MPTP. J. Neurochem. 49:622–630.

    PubMed  Google Scholar 

  11. Early, F. G. P., Patel, S. D., Ragan, C. I., and Attardi, G. 1987. Photolabelling of a mitochondrially encoded subunit of NADH dehydrogenase with [3H] dihydrorotenone. FEBS Lett. 219:108–113.

    PubMed  Google Scholar 

  12. Ikebe, S., Tanaka, M., Ohno, K., Sato, W., Hanori, K., Kundo, T., Mizuno, Y., and Ozawa, T. 1990. Increase of deleted mitochondrial DNA in the striatum in Parkinson's disease and senescence. Biochem. Biophys. Res. Commun. 170:1044–1048.

    PubMed  Google Scholar 

  13. Lestienne, P., Nelson, J., Riederer, P., Jellinger, K., and Reichmann, H. 1990. Normal mitochondrial genome in brain from patients with Parkinson's disease and complex I defect. J. Neurochem. 55:1810–1812.

    PubMed  Google Scholar 

  14. Lestienne, P., Nelson, I., Riederer, H., Reichmann, H., and Jellinger, K. 1991. Mitochondrial DNA in postmortem brain from patients with Parkinson's disease. J. Neurochem. 56:1819.

    PubMed  Google Scholar 

  15. Masukawa, T., Sai, M., and Tochino, Y. 1989. Methods for depleting brain glutathione. Life Sci. 44:417–424.

    PubMed  Google Scholar 

  16. Benzi, G., Curti, D., Marzatico, F., and Pastoris, O. 1991. Agerelated acute depletion of cerebral glutathione by peroxidative stress. J. Neurosc. Res., in press.

  17. Benzi, G., Pastoris, O., Gorini, A., Marzatico, F., Villa, R. F., and Curti, D. 1991. Influence of aging on the acute depletion of reduced glutathione by electrophilic agents. Neurobiol. Aging 12:227–231.

    PubMed  Google Scholar 

  18. Dagani, F., Zanada, F., Marzatico, F., and Benzi, G. 1985. Free mitochondria and synaptosomes from single rat forebrain. A comparison between two known subfractionation techniques. J. Neurochem. 45:653–656.

    PubMed  Google Scholar 

  19. Booth, R. F. G., and Clark, J. B. 1978. A rapid method for the preparation of relatively pure metabolically competent synaptosomes from rat brain. Biochem. J. 176:365–370.

    PubMed  Google Scholar 

  20. Kröger, A., and Klingenberg, M. 1966. On the role of ubiquinone in mitochondria. II. Redox reactions of ubiquinone under the control of oxidative phosphorylation. Biochem. Z. Bd. 344:317–335.

    Google Scholar 

  21. Kröger, A., and Klingenberg, M. 1970. Quinones and nicotinamide nucleotides associated with electron transfer. Pages 534–574,in Vitamins and Hormones, vol. 28, Academic Press, New York.

    Google Scholar 

  22. Wilson, D. F., Stubbs, M., Oshino, N., and Erecinska, M. 1974. Thermodynamic relationships between the mitochondrial oxidation-reduction reactions and cellular ATP levels in ascites tumor cells and perfused rat liver. Biochemistry 13:5305–5311.

    PubMed  Google Scholar 

  23. Wilson, D. F., Stubbs, M., Veech, R. L., Erecinska, M., and Krebs, H. A. 1974. Equilibrium relations between the oxidation-reduction reactions and the adenosine triphosphate synthesis in suspensions of isolated liver cells. Biochem. J. 140:57–64.

    PubMed  Google Scholar 

  24. Curti, D., Giangaré, M. C., Redolfi, M. E., and Benzi, G. 1990. Age-related modifications of cytochrome c oxidase activity in discrete brain regions. Mech. Ageing Dev. 55:171–180.

    PubMed  Google Scholar 

  25. Cooper A. J. L., Pulsinelli, W. A., and Duffy, T. E. 1980. Glutathione and ascorbate during ischemia and post-ischemic reperfusion in rat brain. J. Neurochem. 35:1242–1245.

    PubMed  Google Scholar 

  26. Lowry, O. H., Passonneau, J. V., Hasselberger, F. X., and Schulz, D. W. 1964. The effect of ischemia on known substrates and cofactors of the glycolytic pathway in brain. J. Biol. Chem. 239:18–30.

    PubMed  Google Scholar 

  27. Griffith, O. W., and Meister, A. 1979. Translocation of intra-cellular glutathione to membrane-bound γ-glutamyl transpeptidase as a discrete step in the γ-glutamyl cycle: glutathionuria after inhibition of transpeptidase. Proc. Natl. Acad. Sci. (USA) 76:268–272.

    Google Scholar 

  28. Tietze F. 1969. Enzymic method for quantitative determination of nanogram amounts of total and oxidized glutathione: applications to mammalian blood and other tissues. Anal. Biochem. 27:502–522.

    PubMed  Google Scholar 

  29. Loschen, G., Flohé, L., and Chance, B. 1971. Respiratory chain linked H2O2 production in pigeon heart mitochondria. FEBS Lett. 18:261–264.

    PubMed  Google Scholar 

  30. Loschen, G., Azzi, A. and Flohé L. 1973. Mitochondrial H2O2 formation: relationship with energy conservation. FEBS Lett. 33:84–88.

    PubMed  Google Scholar 

  31. Boveris, A., Oshino, N., and Chance, B. 1972. The cellular production of hydrogen peroxide. Biochem. J. 128:617–630.

    PubMed  Google Scholar 

  32. Nohl, H., and Hegner, D. 1978. Do mitochondria produce oxygen radicals in vivo? Eur. J. Biochem. 82:563–567.

    PubMed  Google Scholar 

  33. Loschen, G., Azzi, A., and Flohé L. 1974. Mitochondrial hydrogen peroxide formation. Pages 215–229,in Thurman, R. G., Yonetani, T., Williamson, J. R., and Chance, B. (eds.), Alcohol and Aldehyde Metabolizing Systems, Academic Press, New York.

    Google Scholar 

  34. Boveris, A., Cadenas, E., and Stoppani, A. O. M. 1976. Role of ubiquinone in the mitochondrial generation of hydrogen peroxide. Biochem. J. 156:435–444.

    PubMed  Google Scholar 

  35. Cadenas, E., Boveris, A., Ragan, C. I., and Stoppani A. O. M. 1977. Production of O2 radicals and H2O2 by NADH-ubiquinone reductase and ubiquinol: cytochrome c reductase from beef heart mitochondria. Arch. Biochem. Biophys. 180:248–257.

    PubMed  Google Scholar 

  36. Gutman, M., Coles, C. J., Singer T. P., and Casida, J. E. 1971. On the functional organization of the respiratory chain at the dehydrogenase-coenzyme Q junction. Biochemistry 10:2036–2043.

    PubMed  Google Scholar 

  37. Trumpower, B. L. 1978. Restoration of ubiquinone-pool function, tight behaviour to succinate dehydrogenase, having latent reconstructive activity of ubiquinone-cytochrome c reductase complex. Biochem. Biophys. Res. Commun. 83:528–535.

    PubMed  Google Scholar 

  38. Yu, L., Yu, C. A., and King, T. E. 1978. The indispensability of phospholipid and ubiquinone in mitochondrial electron transfer from succinate to cytochrome c. J. Biol. Chem. 253:2657–2663.

    PubMed  Google Scholar 

  39. Norling, B., Glazek, E., Nelson, N. B. and Ernster, L. 1974. Studies with ubiquinone-depleted submitochondrial particles; quantitative incorporation of small amounts of ubiquinone and the effects on the NADH- and succinate-oxidase activities. Eur. J. Biochem. 47:475–482.

    PubMed  Google Scholar 

  40. Crane, F. L. 1977. Hydroquinone dehydrogenase. Ann. Rev. Biochem. 46:439–469.

    PubMed  Google Scholar 

  41. Rich, P. R., and Bendall, D. S. 1980. The kinetics and thermodynamics of the reduction of cytochrome c by substituted p-benzoquinols in solution. Biochim. Biophys. Acta 592:506–518.

    PubMed  Google Scholar 

  42. Morison, L. E., Schelhorn, J. E., Cotton, T. M., Bering, C. L., and Loach, P. A. 1982. Electrochemical and spectral properties of ubiquinone and synthetic analogs: relevance to bacterial photosynthesis. Pages 35–58,in Trumpower, B. L. (ed.), Function of Quinones in Energy Conserving Systems, Academic Press, New York.

    Google Scholar 

  43. Trumpower, B. L., and Simmons, Z. 1979. Diminished inhibition of mitochondrial electron transfer from succinate to cytochrome c by thenoyltrifluoroacetone induced by antimycin. J. Biol. Chem. 254:4608–4616.

    PubMed  Google Scholar 

  44. Nohl, H., and Jordan, W. 1984. The biochemical role of ubiquinone and ubiquinone-derivatives in the generation of hydroxylradicals from hydrogen-peroxide. Pages 155–163,in Bors, W., Saran, M., and Tait, D. (eds.) Oxygen Radicals in Chemistry and Biology, Walter de Gruyter and Co., Berlin.

    Google Scholar 

  45. Chance, B., Wilson, D. F., Dutton, P. L., and Erecinska, M. 1970. Energy coupling mechanisms in mitochondria: Kinetic, spectroscopic, thermodynamic properties of an energy-transducing from of cytochrome b. Proc. Natl. Acad. Sci. (USA) 66:1175–1182.

    Google Scholar 

  46. Berry, E. A., and Trumpower, B. L. 1985. Pathways of electrons and protons through the cytochrome bc1 complex of the mitochondrial respiratory chain. Pages 365–389,in Lenaz, G. (ed.), Coenzyme Q, John Wiley and Sons, New York.

    Google Scholar 

  47. Chance, B. 1972. On probe and ubiquinone interactions in mitochondrial membranes. Pages 85–99,in Azzone, G. F., Carafoli, E., Lehninger, A. L., Quagliariello, E., and Siliprandi, N. (eds.). Biochemistry and Biophysics of Mitochondrial Membranes, Academic Press, New York.

    Google Scholar 

  48. Grinna, L. S. 1977. Age-related changes in the lipids of the microsomal and the mitochondrial membranes of rat liver and kidney. Mech. Ageing Dev. 6:197–205.

    PubMed  Google Scholar 

  49. Nohl, H. 1979. Influence of age on thermotropic kinetics of enzymes involved in mitochondrial energy-metabolism. Z. Gerontol. 12:9–18.

    PubMed  Google Scholar 

  50. Nohl, H., Jordan, W., and Hegner, D. 1982. Mitochondrial formation of OH-radicals by a ubisemiquinone-dependent reaction. An alternative pathway of the iron-catalysed Haber-Weiss-cycle. Hoppe Seyler's Z. Physiol. Chem. 363:599–607.

    PubMed  Google Scholar 

  51. Labrid, C. 1982. Current concepts on almitrine bismesylate mechanism of action. Bull. Eur. Physiopathol. Respir. 18:299–306.

    Google Scholar 

  52. Laubie, M. 1982. Effects of almitrine bismesylate on gas exchange and ventilation in the anaesthetized dog. Bull. Eur. Physiopathol. Respir. 18:279–284.

    Google Scholar 

  53. Laubie, M. and Le Douarec, J. C. 1969. Etude pharmacologique du pipratecol et d'une association médicamenteuse pipratecol-raubasine. Arzneimittelforsch. 19:1820–1826.

    PubMed  Google Scholar 

  54. Kroneberg, G. 1985. Pharmakologie des Rauwolfia Alkaloides Raubasine (δ-yohimbine-ajmalicine). Arch. Exp. Pathol. Pharmacol. 233:72–79.

    Google Scholar 

  55. Roquebert, J., and Demichel, P. 1985. Inhibition of the α1 and α2 pressor response in pithed rats by raubasine, tetrahydro-altonine and akuammigine. Eur. J. Pharmacol. 106:203–205.

    Google Scholar 

  56. Nishizawa, Y., and Matsuzaki, F. 1969. The antagonistic action of homopantothenic acid against pantothenic acid. J. Vitamin 15:8–25.

    PubMed  Google Scholar 

  57. Nishizawa, Y., Kodama, T., and Tsujino, G. 1968. Effect of gamma-aminobutyric acid derivates, especially homopantothemic acid, on excitability of the brain. J. Vitamin 14:331–344.

    PubMed  Google Scholar 

  58. Nishizawa, Y. Kodama, T., Ishida, R., Adachi, S., and Kowa, Y. 1968. Electrophysiological investigation of homopantothenic acid. J. Vitamin 14:345–353.

    PubMed  Google Scholar 

  59. Benzi, G., Villa, R. F., Dossena, M., Vercesi, L., Gorini, A., and Pastoris, O. 1984. Cerebral endogenous substrate utilization during the recovery period after profound hypoglycemia. J. Neurosci. Res. 11:437–450.

    PubMed  Google Scholar 

  60. Dagani, F., Curti, D., and Marzatico, F. 1989. Effect of Ca2+-homopantothenate and mild hypoxia on some enzyme activities evaluated in subcellular fractions from different rat brain regions. Mol. Chem. Neuropath. 10:157–169.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Benzi, G., Curti, D., Pastoris, O. et al. Sequential damage in mitochondrial complexes by peroxidative stress. Neurochem Res 16, 1295–1302 (1991). https://doi.org/10.1007/BF00966660

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966660

Key Words

Navigation