Skip to main content
Log in

Effect of hyperbaric oxygenation on the Na+, K+-ATPase and membrane fluidity of cerebrocortical membranes after experimental subarachnoid hemorrhage

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

It is reported that CNS hemorrage causes membrane dysfunction and may exacerbate this damage as a result of secondary ischemia or hypoxia. Since hyperbaric oxygenation improves oxygen metabolism, it may reduce this membrane damage. The present study was conducted to reveal whether hyperbaric oxygenation influences membrane alteration after hemorrhage. Thirty minutes after subarachnoid hemorrhage induction, rats were treated with hyperbaric oxygenation 2 ATA for 1 hour. Rats were decapitated 2 hours after subarachnoid hemorrhage induction. Na+, K+-ATPase activity measurement, and spin-label studies were performed on crude synpatosomal membranes. Subarachnoid hemorrhage decreased Na+, K+-ATPase activity. Spin label studies showed that hydrophobic portions of near the membrane surface became more rigid and the mobility of the membrane protein labeled sulfhydryl groups decreased after subarachnoid hemorrhage. Hyperbaric oxygenation significantly ameliorated most of the subarachnoid hemorrhage induced alterations. We conclude that hyperbaric oxygenation may be a beneficial treatment for acute subarachnoid hemorrhage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Miller, J. D., and Sullivan, H. 1979. Severe intracranial hypertension. Int-Anesthesiol-Clin. 17:19–75.

    PubMed  Google Scholar 

  2. Neubauer, R. A., and End, E. 1980. Hyperbaric oxygenation as an adjunct therapy in strokes due to thrombosis: a review of 122 patients. Stroke 11:297–304.

    PubMed  Google Scholar 

  3. Sukoff, M. H., and Ragatz, R. E. 1982. Hyperbaric oxygenation for the treatment of acute cerebral edema. Neurosurgery 10:29–38.

    PubMed  Google Scholar 

  4. Kawamura, S., Ohta, H., Yasui, N., Nemoto, M., Hinuma, Y., and Suzuki, E. 1984. Effects of hyperbaric oxygenation in patients with subarachnoid hemorrhage evaluated with somatosensory evoked potentials. Pages 159–163, in Jacobson, J. H. (eds.), Proceedings of the Eighth International Congress on Hyperbaric Medicine, Best Publishing Company, San Pedolo.

    Google Scholar 

  5. Hubschmann, O. R., and Kornhauser, D. 1982. Effect of subarachnoid hemorrhage on the extracellular microenvinronment. J. Neurosurg. 56:216–221.

    PubMed  Google Scholar 

  6. Hubschmann, O. R., and Nathanson, D. C. 1985. The role of calcium and cellular membrane dysfunction in experimental trauma and subarachnoid hemorrhage. J. Neurosurg. 62:698–703.

    PubMed  Google Scholar 

  7. Marzatico, F. M., Gaetani, P., Rodriguez y Baena, R., Silavani, V., Paoletti, P., and Benzi, G. 1988. Bioenergetics of different brain areas after experimental subarachnoid hemorrhage in rats. Stroke 19:378–384.

    PubMed  Google Scholar 

  8. Fischer, B., Jain, K. K., Braun, E., and Lehrl, S. 1988. chapter 14. hyperbaric oxygenation in disorders of the nervous system. Pages 134–175. in Fischer, B., Jain, K. K., Braun, E., Lehrl, S., (eds.), Handbook of hyperbaric oxygen theraphy, Springer-Verlag, Berlin Heiderberg.

    Google Scholar 

  9. Solomon, R. A., Antunes, J.L., Chen, R. Y. Z., Bland, L., and Chien, S. 1985. Decrease in cerebral blood flow in rats after experimental subarachnoid hemorrhage: a new animal model. Stroke 16:58–64.

    PubMed  Google Scholar 

  10. Kamada, K. 1991. Experimental studies of cerebral blood gas changes with acute increased intracranial pressure under high pressure. Jpn. J. Hyperbar. Med. 26:65–74.

    Google Scholar 

  11. Glowinski, J., and Iversen, L. L. 1966. Regional studies of catecholamines in the rat brain—I. J. Neurochem. 13:665–669.

    Google Scholar 

  12. Gray, E. G., and Whittaker, V. P. 1962. The isolation of nerve endings from brain: an electron-microscopic study of cell fragments derived by homogenization and centrifugation. J. Anat. 96:79–87.

    PubMed  Google Scholar 

  13. Leong, S. F., and Leung, T. K. C. 1991. Diabetes induced by streptozotocin causes reduced Na−K ATPase in the brain. Neurochem. Res. 16:1161–1165.

    PubMed  Google Scholar 

  14. Nagy, K., Floyd, R., Simon, P., and Nagy, I. Z. 1985. Studies on the effect of iron overload on rat cortex synaptosomal membranes. Biochim. Biophys. Acta 820:216–222.

    PubMed  Google Scholar 

  15. Eletr, S., and Inesi, G. 1972. Phase changes in the lipid moieties of sarcoplasmic reticulum membranes induced by temperature and protein conformational changes. Biochim. Biophys. Acta 290:178–185.

    PubMed  Google Scholar 

  16. Hubbell, W. L., and McConnel, H. M. 1971. Molecular Motion in Spin-Labeled Phospholipids and Membranes. J. Am. Chem. Soc. 93:314–326.

    PubMed  Google Scholar 

  17. Butterfield, D. A., Roses, A. D., Appel, S. H., and Chesnut, D. B. 1976. Electron spin resonance studies of membrane proteins in erythrocytes in myotonic muscular dystrophy. Arch. Biochem. Biophys. 177:226–234.

    PubMed  Google Scholar 

  18. Chong, P. L. G., Fortes, P. A. G., and Jameson, D. M. 1985. Mechanisms of Inhibition of (Na,K)-ATPase by Hydrostatic Pressure Studied with Fluorescent Probes. J. Biol. Chem. 260:14484–14490.

    PubMed  Google Scholar 

  19. Kimelberg, H. K., and Papahadjopoulos, D. 1972. Phospholipid requirement for (Na++K+)-ATPase activity: head-group specificity and fatty acid fluidity. Biochim Biophys. Acta 282:277–292.

    PubMed  Google Scholar 

  20. Sandermann Jr., H. 1978. Regulation of membrane enzyme by lipids. Biochim. Biophys. Acta. 515:209–237.

    PubMed  Google Scholar 

  21. Bralet, J., Beley, P., Jemaa, R., Bralet, A. M., and Beley, A. 1987. Lipid metabolism, cerebral metabolic rate, and some related enzyme activities after brain infarction in rats. Stroke 18:418–425.

    PubMed  Google Scholar 

  22. Dagani, F., and Erecínska, M. 1987. Relationships among ATP synthesis, K+ gradients, and neurotransmitter amino acid levels in isolated rat brain synpatosomes. J. Neurochem. 49:1229–1240.

    PubMed  Google Scholar 

  23. MacMillan, V. 1982. Cerebral Na+, K+-ATPase activity during exposure to and recovery from acute ischemia. J. Cereb. Blood Flow Metab. 2:457–465.

    PubMed  Google Scholar 

  24. Nagy, K., Simon, P., and Zs.-Nagy, I. 1983. Spin label studies on synaptosomal membranes of rat brain cortex during aging. Biochim. Biophys. Res. Com. 117:688–694.

    Google Scholar 

  25. Zaleska-M., M., Nagy, K., and Floyd, R. A. 1989. Iron-induced lipid peroxidation and inhibition of dopamine synthesis in striatum synaptosomes. Neurochem. Res. 14:597–605.

    PubMed  Google Scholar 

  26. Keith, A. D., Sharnoff, M., and Cohn, G. E. 1973. A summary and evaluation of spin labels used as probes for biological membrane structure. Biochim. Biophys. Acta. 300:379–419.

    PubMed  Google Scholar 

  27. Schreier, S., Polnaszek, C. F., and Smith I. C. P. 1978. Spin labels in membranes: problems in practice. Biochim. Biophys. Acta. 515:375–436.

    Google Scholar 

  28. Sandberg, H. E., Bryant, R. G., and Piette, L. H. 1969. Studies on the location of sulfhydryl groups in erythrocyte membranes with magnetic resonance spin probes. Arch. Biochem. Biophys. 133:144–152.

    PubMed  Google Scholar 

  29. Chien, K. R., Abrams, J., Serroni, A., Martin, J. T., and Farber, J.L. 1978. Accelerated phospholipid degradation and associated membrane dysfunction in irreversible, ischemic liver cell Injury. J. Biol. Chem. 253:4809–4817.

    PubMed  Google Scholar 

  30. Gaetani, P., Marzatico, F., Rodriguez y Baena, R., Pacchiarini, L., Vigano, T., Grignani, G., Crivellari, M. T., and Benzi, G. 1990. Arachidonic Acid Metabolism and Pathophysiologic Aspects of Subarachnoid Hemorrhage in Rats. Stroke 21:328–332.

    PubMed  Google Scholar 

  31. Marzatico, F., Gaetani, P., Rodriguez y Baena, R., Silvani, V., Fulle, I., Lombardi, D., Ferlenga, P., and Benzi, G. 1989. Experimental subarachnoid hemorrhage. Lipid peroxidation and Na+, K+-ATPase in different rat brain areas. Mol. Chem. Neuropathol 11:99–107.

    PubMed  Google Scholar 

  32. Dana, J., and van den Brenk, H. A. S. 1963. Measurement of oxygen tensions in cerebral tissues of rats exposed to high pressures of oxygen. J. Appl. Physiol. 18:869–876.

    PubMed  Google Scholar 

  33. White, P. F., Johnston, R. R., and Pudwill, C. R. 1975. Interaction of ketamine and halothane in rats. Anesthesiology 42:179–186.

    PubMed  Google Scholar 

  34. Davis, D. W., Mans, A. M., Biebuyck, J. F., and Hawkins, R. A. 1988. The influence of ketamine on regional brain glucose use. Anesthesiology 69:199–205.

    PubMed  Google Scholar 

  35. Dedrick, D. F., Scherer, Y. D., and Biebuyck, J. F. 1975. Use of a rapid brain-sampling technique in a physiologic preparation: Effects of morphine, ketamine, and halothane on tissue energy intermediates. Anesthesiology 42:651–657.

    PubMed  Google Scholar 

  36. Sakaki, S., Ohta, S., Nakamura, H., and Takeda, S. 1988. Free radical reaction and biological defense mechanism in the pathogensis of prolonged vasospasm in experimental subarachnoid hemorrhage. J. Cereb. Blood Flow Metab. 8:1–8.

    PubMed  Google Scholar 

  37. Watanabe, T., Sasaki, T., Asano, T., Takakura, K., Sano, K., Fuchinoue, T., Watanabe, K., Yoshimura, S., and Abe, K. 1988. Changes in glutathione peroxidase and lipid peroxides in cerebrospinal fluid and serum after subarachnoid hemorrhage: with special reference to the occurrence of cerebral vasospasm. Neurol. Med. Chir. (Tokyo). 28:645–649.

    Google Scholar 

  38. Noda, Y., McGeer, P. L., and McGeer, E. G. 1983. Lipid peroxide distribution in brain and the effect of hyperbaric oxygen. J. Neurochem. 40:1329–1332.

    PubMed  Google Scholar 

  39. Mishra, O. P., Delivoria-Papadopoulos, M., Chaillane, G., and Wagerle, L. C. 1989. Lipid peroxidation as the mechanism of modification of the affinity of the Na+, K+-ATPase active sites for ATP, K+, Na+, and Strophanthidin in vitro. Neurochem. Res. 14:845–851.

    PubMed  Google Scholar 

  40. Viani, P., Cervato, k G., Fiorilli, A., and Cestaro, B. 1991. Agerelated differences in synaptosomal peroxidative damage and membrane properties. J. Neurochem. 56:253–8.

    PubMed  Google Scholar 

  41. Sadrzadeh, S. M. H., Graf, E., Panter, S. S., Hallaway, P. E., and Eaton, J. W. 1984. Hemoglobin: a biologic Fenton reagent. J. Biol. Chem. 259:14354–14356.

    PubMed  Google Scholar 

  42. Sadrzadeh, S. M. H., Anderson, D. K., Panter, S. S., Hallaway, P. E., and Eaton, J. W. 1987. Hemoglobin potentiates central nervous system damage. J. Clin. Invest. 79:662–664.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yufu, K., Itoh, T., Edamatsu, R. et al. Effect of hyperbaric oxygenation on the Na+, K+-ATPase and membrane fluidity of cerebrocortical membranes after experimental subarachnoid hemorrhage. Neurochem Res 18, 1033–1039 (1993). https://doi.org/10.1007/BF00966765

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00966765

Key Words

Navigation