Skip to main content
Log in

Is ammonia a pathogenetic factor in Alzheimer's disease?

  • Overview
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

An attempt was made to review experimental evidence in favor of the idea that ammonia plays a role in dementia of the Alzheimer type (DAT). Hyperammonemia causes biochemical and cellular dysfunctions in the brain, which can be found in brains of DAT patients. The most conspicuous among these findings are astrocytosis, impairment of glucose utilization, and a decreased rate of energy metabolism, and the impairment of neurotransmission, with a net increase in excitability and glutamate release. The derangement of lysosomal processing of proteins is another potential site of ammonia action. This aspect is especially important in view of the growing evidence for the role of the endosomal-lysosomal system in the formation of amyloidogenic fragments from β-amyloid precursor protein. Ammonia is not considered a primary factor of the disease. However, since hyperammonemia and release of ammonia from the brains of DAT patients is well supported by published observations, ammonia should be taken into account as a factor that contributes to manifestations and the progression of DAT. If elevated ammonia concentrations turn out to be indeed as important in DAT, as is suggested in this review, rational therapeutic avenues can be envisaged that lead to the amelioration of symptoms and progression of the disease.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

β-AP:

β-amyloid protein

β-APP:

β-amyloid precursor protein

CNS:

central nervous system

DAT:

dementia of the Alzheimer type

GABA:

γ-aminobutyrate

MAO:

monoamine oxidase

NAD:

nicotinamide adenine dinucleotide

References

  1. De Kosky, S. T., and Bass, N. H. 1985. Biochemistry of senile dementia. Pages 617–650,in Lajtha, A. (ed.), Handbook of Neurochemistry, vol. 10. Plenum Press, New York.

    Google Scholar 

  2. Brion, J. P., van den Bosche de Aguilar, P., and Flament-Durand, J. 1985. Senile dementia of the Alzheimer type: morphological and immunocytological studies. Pages 164–174,in Traber, J., and Gispen, W. H. (eds.), Advances in Applied Neurological Science: Senile Dementia of Alzheimer type. Springer, Berlin.

    Google Scholar 

  3. Bartus, R. Y., Dean, R. L., Beer, B., and Lippa, A. S. 1982. The cholinergic hypothesis of geriatric memory dysfunction. Science 217:408–417.

    Google Scholar 

  4. Coyle, J. T., Price, D. L., and DeLong, M. A. 1983. Alzheimer's disease, a disorder of cortical cholinergic innervation. Science 219:1184–1190.

    Google Scholar 

  5. Greenamyre, J. T., Penney, J. B., Young, A. B., D'Amato, C. J., Hicks, S. P., and Shoulson, I. 1985. Alterations inl-glutamate binding in Alzheimer's and Huntington's diseases. Science 227:1496–1499.

    Google Scholar 

  6. Smith, C. C. T., Bowen, D. M., Francis, P. T., Snowden, J. S., and Neary, D. 1985. Putative aminoacid transmitters in lumbar cerebrospinal fluid of patients with histologically verified Alzheimer dementia. J. Neurol. Neurosurg. Psychiatry 48:469–471.

    Google Scholar 

  7. Sasaki, H., Muramoto, O., Kanazawa, I., Arai, H., Kosaka, K., and Iizuka, R. 1986. Regional distribution of amino-acid transmitters in post-mortem brains of presenile and senile dementia of Alzheimer type. Ann Neurol. 19:263–269.

    Google Scholar 

  8. McGeer, E. G., McGeer, P. L., Akiyama, H., and Harrop, R. 1989. Cortical glutaminase and glucose utilization in Alzheimer's disease. J. Canad. Sci. Neurol. 16:511–515.

    Google Scholar 

  9. Arai, H., Kosaka, K., and Iizuka, R. 1984. Changes of biogenic amines and their metabolites in postmortem brains from patients with Alzheimer-type dementia. J. Neurochem. 43:388–393.

    Google Scholar 

  10. Perry, E. K., Perry, R. H., Candy, J. M., Fairbain, A. F., Blessed, G., Dick, D. J., and Tomlinson, B. E. 1984. Cortical serotonin S-2 receptor binding abnormalities in patients with Alzheimer's disease. Comparisons with Parkinson's disease. Neurosci. Lett. 51:353–358.

    Google Scholar 

  11. Reynolds, G. P., Arnold, L., Rossor, M. N., Iversen, L. L., Mountjoy, C. Q., and Roth, M. 1984. Reduced binding of tritium labeled ketanserin to cortical serotonin 2 receptors in senile dementia of the Alzheimer type. Neurosci. Lett. 44:47–51.

    Google Scholar 

  12. Herregodts, P., Bruyland, M., De Keyser, J., Solheid, C., Michotte, Y., and Ebinger G. 1989. Monoaminergic neurotransmitters in Alzheimer's disease. J. Neurol. Sci. 92:101–116.

    Google Scholar 

  13. Adolfsson, R., Gottfries, C. G., Roos, B. E., and Winblad, B. 1979. Changes in the brain catecholamines in patients with dementia of Alzheimer type. Br. J. Psychiatry 135:216–223.

    Google Scholar 

  14. Tomlinson, B. E., Irving, D., and Blessed, G. 1981. Cell loss in the locus coeruleus in senile dementia of Alzheimer type. J. Neurol. Sci. 49:419–428.

    Google Scholar 

  15. Gottfries, C. G., Adolfsson, R., Aquilonius, S. M., Carlsson, A., Eckernas, S. A., Nordberg, A., Oreland, L., Svennerholm, L., Wiberg, A., and Winblad, B. 1983. Biochemical changes in dementia disorders of Alzheimer type (AD/SDAT). Neurobiol. Aging 4:262–271.

    Google Scholar 

  16. Gottfries, C. G., Roos, B. E., and Winblad, B. 1976. Monoamine and monamine metabolites in the human brain postmortem in senile dementia. Acta Gerontol. 6:429–435.

    Google Scholar 

  17. Davies, P., Katzman, R., and Terry, R. D. 1980. Reduced somatostatin-like immunoreactivity in cerebral cortex from cases of Alzheimer's disease and Alzheimer senile dementia. Nature 288:279–280.

    Google Scholar 

  18. Sherif, F., Gottfries, C. G., Alafuzoff, I., and Oreland, L. 1992. Brain gamma-aminobutyrate aminotransferase (GABA-T) and monoamine oxidase (MAO) in patients with Alzheimer's disease. J. Neural. Transm. 4:222–240.

    Google Scholar 

  19. Duffy, P. E., Rapport, M., and Graf, L. 1980. Glial fibrillary acidic protein and Alzheimer type senile dementia. Neurology 30:778–782.

    Google Scholar 

  20. Dickson, D. W., Farlo, J., Davies, P., Crystal, H., Fuld, P., and Yen, S. H. 1988. Alzheimer's disease: a double-labeling immunohistochemical study of senile plaques. Am. J. Pathol. 132:86–101.

    Google Scholar 

  21. Davies, P., and Maloney, A. J. R. 1976. Selective loss of central cholinergic neurons in Alzheimer's disease. Lancet ii 1403.

    Google Scholar 

  22. Benton, J. S., Bowen, D. M., Allen, S. J., Haan, E. A., Davison, A. N., Neary, D., Murphy, R. P., and Snowden, J. S., 1982. Alzheimer's disease as a disorder of isodendritic care. Lancet ii. 456.

    Google Scholar 

  23. McGeer, P. L., McGeer, E. G., Suzuki, J., Dolman, C. E., and Nagai, T. 1984. Aging, Alzheimer disease and the cholinergic system of the basal forebrain. Neurology 34:741–745.

    Google Scholar 

  24. Pascual, J., Fontan, A., Zarranz, J. J., Berciano, J., Florez, J. and Pazos, A. 1991. High-affinity choline uptake carner in Alzheimer's disease: Implications for the cholinergic hypothesis of dementia. Brain Res. 552:170–174.

    Google Scholar 

  25. Prusiner, S. D. 1984. Some speculations about prions, amyloid, and Alzheimer's disease. N. Engl. J. Med. 310:661–663.

    Google Scholar 

  26. Crapper, D. R., Dalton, A. J., Karlik, S. J., and De Boni, U. 1981. Role of aluminium in Alzheimer disease. Pages 89–111,in Alexander, P. E. (ed.). Electrolytes in Neuropsychiatric Disorders. Spectrum, Jamaica, N.Y.

    Google Scholar 

  27. Markesbery, W. R., Ehmann, W. D., Hossain, T. I. M., Alauddin, M., and Goodin, D. T. 1981. Instrumental neutron activation analysis of brain aluminum in Alzheimer disease and aging. Ann. Neurol. 10:511–516.

    Google Scholar 

  28. Deloncle, R., and Guillard, O. 1990. Mechanism of Alzheimer's disease: arguments for a neurotransmitter-aluminium complex implication. Neurochem. Res. 15:1239–1245.

    Google Scholar 

  29. Thompson, C. M., Markesbery, W. R., Ehmann, W. D., Mao, Y. X., and Vance, D. E. 1988. Regional brain trace element studies in Alzheimer's disease. Neurotoxicology 9:1–8.

    Google Scholar 

  30. Gorenstein, C. 1987. A hypothesis concerning the role of endogenous colchicine-like factors in the etiology of Alzheimer's disease. Med. Hypotheses 23:371–374.

    Google Scholar 

  31. Maragos, W. F., Greenamyre, J. T., Penney Jr. J. B., and Young, A. B. 1987. Glutamate dysfunction in Alzheimer's disease: an hypothesis. TINS, 10:65–68.

    Google Scholar 

  32. Lawlor, B. A., and Davis, K. L. 1992. Does modulation of glutamatergic function represent a viable therapeutic strategy in Alzheimer's disease? Biol. Psychiatry 31:337–350.

    Google Scholar 

  33. Ojika, K., and Appel, S. H. 1983. Neurotrophic factors and Alzheimers disease. Pages 285–296,in Katzman, R. (Ed.). Biological aspects of Alzheimer's disease. Banbury Report, vol. 15, Cold Spring Harbor Laboratory: Cold Spring Harbor, New York.

    Google Scholar 

  34. Tzourio, C., Bonaiti, C., Clerget-Darpoux, F., and Alperovitch, A. 1992. Segregation analysis in Alzheimer disease: No evidence for a major gene. Am. J. Hum. Gen. 50:645–646.

    Google Scholar 

  35. Jarvik, L. F., Ruth, V., and Matsuyama, S. S. 1980. Organic brain syndrome and aging. A 6 year follow-up of surviving twins. Arch. Gen. Psychiatry 37:280–286.

    Google Scholar 

  36. Heston, L. L., and White, J. 1980. A family study of Alzheimer disease and senile dementia an interim report. Pages. 63–72,in Cole, J. O., and Barrett, J. E. (ed.). American Psychopathological Association series: Psychopathology in the aged, Raven Press, New York.

    Google Scholar 

  37. St. George-Hyslop, P. H., Tanzi, R. E., Polinsky, R. J., Haines, J. L., Nee, L., Watkins, P. C., Myers, R. H., Feldman, R. G., Pollen, D., Drachman, D., Growdon, J., Bruni, A., Foncin, J. F., Salmon, D., Frommet, P., Amaducci, L., Sorbi, S., Piacentini, S., Stewart, G. D., Hobbs, W. J., Conneally, P. M., and Gusella, J. F. 1987. The genetic defect causing familial Alzheimer's disease maps on chromosome 21. Science 235:885–890.

    Google Scholar 

  38. Boyes, B. E., Walker, D. G., McGeer, P. L., and McGeer, E. G. 1992. Identification and characterization of a large human brain gene whose expression is increased in Alzheimer disease. Mol. Brain Res. 12:47–57.

    Google Scholar 

  39. Müller-Hill, B., and Beyreuther, K. 1989. Molecular biology of Alzheimer's disease. Ann. Rev. Biochem. 58:287–307.

    Google Scholar 

  40. Hardy, J., and Allsop, D. 1991. Amyloid deposition as the central event in the aetiology of alzheimer's disease. TIPS 12:383–388.

    Google Scholar 

  41. Selkoe, D. J. 1991. The molecular pathology of Alzheimer's disease. Neuron 6:487–498.

    Google Scholar 

  42. Cork, L. C., Masters, C. L., Beyreuther, K., and Price, D. L. 1990. Development of senile plaques. Relationships of neuronal abnormalities and amyloid deposits. Am. J. Pathol. 137:1383–1392.

    Google Scholar 

  43. Hardy, J. A., and Higgins, G. A. 1992. Alzheimer's disease: The amyloid cascade hypothesis. Science 256:184–185.

    Google Scholar 

  44. Schubert, W., Prior, R., Weidemann, A., Dircksen, H., Multhaupt, G., Masters, C. L., and Beyreuther, K. 1991. Localization of β-amyloid precursor protein at central and peripheral synaptic sites. Brain Res. 563:181–194.

    Google Scholar 

  45. Martin, L. J., Sisodia, S. S., Koo, E. H., Cork, L. C., Dellovade, T. L., Weidemann, A., Beyreuther, K., Masters, C. L., and Price, D. L. 1991. Amyloid precursor protein in aged non-human primates. Proc. Natl. Acad. Sci. USA 88:1461–1465.

    Google Scholar 

  46. Sisodia, S. S., Koo, E. H., Beyteuther, K., Unterbeck, A., and Price, D. L. 1990. Evidence that β-amyloid protein in Alzheimer's disease is not derived by normal processing. Science 248:492–495.

    Google Scholar 

  47. Tanzi, R. E., Gusella, J. F., Watkins, P. C., Bruns, G. A. P., St. George-Hyslop P. H., Van Keuren, M., Patterson, D., Pagan, S., Kurnit, D. M., and Neve, R. L. 1987. Amyloid β-protein gene: cDNA, mRNA distribution and genetic linkage near the Alzheimer locus. Science 235:880–884.

    Google Scholar 

  48. Lai, F., and Williams, R. S. 1989. A prospective study of Alzheimer's disease in Down syndrome. Arch. Neurol. 46:849–853.

    Google Scholar 

  49. Henderson, A. S. 1988. The risk factors of Alzheimer's disease: a review and an hypothesis. Acta Psychiatr. Scand. 78:257–275.

    Google Scholar 

  50. Alafuzoff, I., Adolfsson, R., Grundke-Iqbal, I., and Winblad, B. 1987. Blood-brain barrier in Alzheimer's dementia and in non-demented elderly. An immunocytochemical study. Acta Neuropathol. 73:160–166.

    Google Scholar 

  51. Harman, D. 1984. Free radical theory of aging: The “free radical” diseases. Age 7:111–131.

    Google Scholar 

  52. Lohr, J. B. 1991. Oxygen radicals and neuropsychiatric illness. Some speculations. Arch. Gen. Psychiatry 48:1097–1106.

    Google Scholar 

  53. Jeandel, C., Nicolas, M. B., Dubois, F., Nabet-Belleville, F., Penin, F., and Cuny, G. 1989. Lipid peroxidation and free-radical scavengers in Alzheimer's disease. Gerontology 35:275–282.

    Google Scholar 

  54. Evans, P. H., Klinowski, J., Yano, E., and Urano, N. 1989. Alzheimer's disease: a pathogenetic role for aluminosilicate-induced phagocytic free radicals. Free Radic. Res. Commun. 6:317–321.

    Google Scholar 

  55. Volicer, L., and Crino, P. D. 1990. Involvement of free radicals in dementia of the Alzheimer type: a hypothesis. Neurobiol. Aging 11:567–571.

    Google Scholar 

  56. Benjamin, A. M. 1982. Ammonia. In: Handbook of Neurochemistry. Pages 117–137,in Lajtha, A. (ed.), vol. 1. Plenum Press, New York.

    Google Scholar 

  57. Fisman, M., Gordon, B., Felcki, V., Helmes, E., Appell, J., and Rabhern, K. 1985. Hyperammonemia in Alzheimer's disease. Am. J. Psychiatry 142:71–73.

    Google Scholar 

  58. Fisman, M., Ball, M., and Blume, W. 1989. Hyperammonemia and Alzheimer's disease. J. Am. Ger. Soc. 37:1102.

    Google Scholar 

  59. Conn, H. O., and Kieberthal, M. M. 1979. The hepatic coma syndromes and lactulose. Pages 22–27. Williams & Wilkins, Baltimore.

    Google Scholar 

  60. Branconnier, R. J., Dessain, E. C., McNiff, M. E., and Cole, J. O. 1986. Blood ammonia and Alzheimer's disease. Am. J. Psychiatry 143:1313.

    Google Scholar 

  61. Hoyer, S., Nitsch, R., and Oesterreich, K. 1990. Ammonia is endogenously generated in the brain in the presence of presumed and verified dementia of Alzheimer type. Neurosci. Lett. 117:358–368.

    Google Scholar 

  62. Butterworth, R. F., Giguere, J.-F., Michaud, J., Lavoie, J., and Pomier-Layrargues, G. (1987). Ammonia: Key factor in the pathogenesis of hepatic encephalopathy. Neurochem. Pathol. 6:1–12.

    Google Scholar 

  63. Butterworth, R. F. 1992. Pathogenesis and treatment of portal-systemic encephalopathy: an update. Dig. Dis. Sci. 37:321–327.

    Google Scholar 

  64. Zieve, L. 1987. Pathogenesis of hepatic encephalopathy. Metabolic Brain Dis. 2:147–165.

    Google Scholar 

  65. Drayna, C. J., Titcomb, C. P., Varma, R. R., and Soergel, K. H. 1981. Hyperammonemic encephalopathy caused by infection in a neurogenic bladder. N. Engl. J. Med. 304:766–768.

    Google Scholar 

  66. Vrba, R., and Folberg, J. 1959. Endogenous metabolism in brain in vitro and in vivo. J. Neurochem. 4:338–349.

    Google Scholar 

  67. Vrba, R., Folberg, J., and Kanturek, V. 1957. Ammonia formation in brain cortex slices. Nature 179:470–471.

    Google Scholar 

  68. Weil-Malherbe, H., and Drysdale, A. C. 1957. Ammonia formation in brain. III. Role of the protein amide groups and of hexosamines. J. Neurochem. 1:250–257.

    Google Scholar 

  69. Kvamme, E. 1983. Ammonia Metabolism in the CNS. Prog. Neurobiol. 20:109–132.

    Google Scholar 

  70. Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Landeem, R. W., Cheng, M. S., Wu, J. F., and Floyd, R. A. 1991. Reversal of age-related increase in brain protein oxidation, decrease in enzyme activity, and loss in temporal and spatial memory by chronic administration of the spin-trapping compound N-tert. butyl-α-phenylnitrone. Proc. Natl. Acad. Sci. USA 88:3633–3636.

    Google Scholar 

  71. Oliver, C. N., Starke-Reed, P. E., Stadtman, E. R., Liu, G. J., Carney, J. M., and Floyd, R. A. 1990. Oxidative damage to brain proteins, loss of glutamine synthetase activity and production of free radicals during ischemia/reperfusion-induced injury to gerbil brain. Proc. Natl. Acad. Sci. USA 87:5144–5147.

    Google Scholar 

  72. Schor, N. F., Ahdab-Barmada, M., and Nemoto, E. 1991. Brain glutamine synthetase activity and hyperoxia in neonatal rats. Brain Res. 566:342–343.

    Google Scholar 

  73. Smith, C. D., Carney, J. M., Starke-Reed, P. E., Oliver, C. N., Stadtman, E. R., Floyd, R. A., and Markesbery, W. R. 1991. Excess brain protein oxidation and enzyme dysfunction in normal aging and in Alzheimer disease. Proc. Natl. Acad. Sci. USA 88:10540–10543.

    Google Scholar 

  74. Procter, A. W., Palmer, A. M., Francis, D. T., Low, S. L., Neary, D., Murphey, E., Doshi, R., and Bowen, D. M. 1988. Evidence of glutamatergic denervation and possible abnormal metabolism in Alzheimer's disease. J. Neurochem. 50:790–802.

    Google Scholar 

  75. Student, A. K., and Edwards, D. J. 1977. Subcellular localization of types A and B monoamine oxidase in rat brain. Biochem. Pharmacol. 26:2337–2342.

    Google Scholar 

  76. Garrick, N., and Murphy, D. L. 1980. Species differences in the deamination of dopamine and other substrates for monoamine oxidase in brain. Psychopharmacology 72:27–33.

    Google Scholar 

  77. Robinson, D. S., Davis, J. M., Nies, A., Ravaris, C. L., and Sylwester, D. 1971. Relation of sex and aging to monoamine oxidase activity in human brain, plasma and platelets. Arch. Gen. Psychiatry 24:536–539.

    Google Scholar 

  78. Adolfsson, R., Gottfries, C. G., Oreland, L., and Winblad, B. 1980. Increased activity of brain and platelet monoamine oxidase in dementia of Alzheimer type. Life Sci. 27:1029–1034.

    Google Scholar 

  79. Rainikainen, K. J., Paljärvi, L., Halonen, T., Malminen, O., Kosma, V. M., Laakso, M., and Riekkinen, P. J. 1988. Dopaminergic system and monoamine oxidase-B activity in Alzheimer's disease. Neurobiol. Aging 9:245–252.

    Google Scholar 

  80. Nakamura, S., Kawamata, T., Akiguchi, I., Kamayama, M., Nakamura, N., and Kimura, H. 1990. Expression of monoamine oxidase B activity in astrocytes of senile plaques. Acta Neuropathol. 80:419–425.

    Google Scholar 

  81. Jossan, S. S., Gillberg, P. G., Gottfries, C. G., Karlsson, I., and Oreland, L. 1991. Monoamine oxidase B in brains from patients with Alzheimer's disease: a biochemical and autoradiographical study. Neurosci. 45:1–12.

    Google Scholar 

  82. Falsaperla, A., Monici Preti, P. A., and Oliani, C. 1990. Selegiline versus oxiracetam in patients with Alzheimer-type dementia. Clin. Ther. 12:376–384.

    Google Scholar 

  83. Campi, N., Todeschini, G. P., and Scarzella, L. 1990. Selegiline versus L-acetylcarnitine in the treatment of Alzheimer-type dementia. Clin. Ther. 12:306–314.

    Google Scholar 

  84. Martignoni, E., Bono, G., Blandini, F., Sinforiani, E., Merlo, P., and Nappi, G. 1991. Monoamines and related metabolite levels in the cerebrospinal fluid of patients with dementia of Alzheimer type. Influence of treatment with L-deprenyl. J. Neural Transm. 3:15–25.

    Google Scholar 

  85. Mangoni, A., Grassi, M. P., Frattola, L., Piolti, R., Bassi, S., Motta, A., Marcone, A., and Smirne, C. 1991. Effect of an MAO-B inhibitor in the treatment of Alzheimer disease. Eur. Neurol. 31:100–107.

    Google Scholar 

  86. Raabe, W. A., and Onstad, G. A. 1982. Ammonia and methionine sulfoximine intoxication. Brain Res. 242:291–298.

    Google Scholar 

  87. Yamamoto, T., Iwasaki, Y., Sato, Y., Yamamoto, H., and Konno, H. 1989. Astrocytic pathology of methionine sulfoximine-induced encephalopathy. Acta Neuropathol. 77:357–368.

    Google Scholar 

  88. Jessy, J., Mans, A. M., De Joseph, R. M., and Hawkins, A. 1990. Hyperammonemia causes many of the changes found after portacaval shunting. Biochem. J. 272:311–317.

    Google Scholar 

  89. Raabe, W. 1987. Synaptic transmission in ammonia intoxication. Neurochem. Pathol. 6:145–166.

    Google Scholar 

  90. Roberts, E. 1976. Disinhibition as an organizing principle in the nervous system. The role of the GABA system. Application to neurologic and psychiatric disorders. Pages 515–539, in Roberts, E., Chase, T. N., and Tower, D. B. (eds.), GABAin Nervous System Function. Raven Press, New York.

    Google Scholar 

  91. Hawkins, R. A., and Mans, M. 1990. Cirrhosis, hepatic encephalopathy and ammonium toxicity. Adv. Exp. Med. Biol. 272:1–22.

    Google Scholar 

  92. Lockwood, A. H., Yap, E. W. G., and Wong, W. H. 1991. Cerebral ammonia metabolism in patients with severe liver disease and minimal hepatic encephalopathy. J. Cerebral Blood Flow Metab. 11:337–341.

    Google Scholar 

  93. Gibson, G. E., Zimber, A., Krook, L., Richardson, E. P., and Visek, W. J. 1974. Brain histology and behavior of mice injected with urease. J. Neuropathol. Exp. Neurol. 33:201–211.

    Google Scholar 

  94. Martin, H., Voss, K., Hufnagl, P., Wack, R., and Wassilew, G. 1987. Morphometric and densitometric investigations of protoplasmic astrocytes and neurons in hepatic encephalopathy. Exp. Pathol. 32:198–237.

    Google Scholar 

  95. Lavoie, J., Giguère, J. F., Pomier Layrargues, G., and Butterworth, R. F. 1987. Amino acid changes in autopsied brain tissue from cirrhotic patients with hepatic encephalopathy. J. Neurochem. 49:692–697.

    Google Scholar 

  96. Foster, N. L., Chase, T. N., Mansi, L., Brooks, R., Fedic, P., Patronas, N. J., and Dichiro, G. 1984. Cortical abnormalities in Alzheimer's disease. Ann. Neurol. 16:649–654.

    Google Scholar 

  97. Fukuyama, H., Harada, K., Yamauchi, H., Miyoshi, T., Yamagushi, S., Kimura, J., Kameyama, M., Senda, M., Yonekura, Y., and Konishi, J. 1991. Coronal reconstruction images of glucose metabolism in Alzheimer's disease. J. Neurol. Sci. 106:128–134.

    Google Scholar 

  98. Hoyer, S., Oesterreich, K., and Wagner, O. 1988. Glucose metabolism as the site of the primary abnormality in early-onset dementia of Alzheimer type? J. Neurol. 235:143–148.

    Google Scholar 

  99. Hoyer, S., and Nitsch, R. 1989. Cerebral excess release of neurotransmitter amino acids subsequent to reduced cerebral glucose metabolism in early-onset dementia of Alzheimer type. J. Neural Transm. 75:227–232.

    Google Scholar 

  100. Hoyer, S. 1991. Abnormalities of glucose metabolism in Alzheimer's disease. Ann. N.Y. Acad. Sci. 640:53–58.

    Google Scholar 

  101. Frackowiak, R. S., Pozzili, C., Legg, N. J., Du Boulay, G. H., Marshall, J., Lenzi, G. L., and Jones, T. 1981. Regional cerebral oxygen supply and utilization in dementia. A clinical and physiological study with oxygen-15 and positron tomography. Brain 104:753–778.

    Google Scholar 

  102. Heiss, W. D., Szelies, B., Kessler, J., and Herholz, K. 1991. Abnormalities of energy metabolism in Alzheimer's disease studied with PET. Ann. N.Y. Acad. Sci. 640:65–71.

    Google Scholar 

  103. Parker, Jr. W. D. 1991. Cytochrome oxidase deficiency in Alzheimer's disease. Ann. N.Y. Acad. Sci. 640:59–64.

    Google Scholar 

  104. Liguri G., Taddei, N., Nassi, P., Latorraca, S., Nediani, C., and Sorbi, S. 1990. Changes in Na+, K+-ATPase, Ca2-ATPase and some soluble enzymes related to energy metabolism in brains of patients with Alzheimer's disease. Neurosci. Lett. 112:338–342.

    Google Scholar 

  105. Frederickson, R. C. A. 1992. Astroglia in Alzheimer's disease. Neurobiol. Aging 13:239–253.

    Google Scholar 

  106. Butterworth, R. F., Girard, G., and Giguère, J. F. 1988. Regional differences in the capacity for ammonia removal by brain following portacaval anastomosis. J. Neurochem. 51:486–490.

    Google Scholar 

  107. Swain, M. S., Blei, A. T., Butterworth, R. F., and Kraig, R. P. 1991. Intracellular pH rises and astrocytes. swell after portacaval anastomosis in rats. Am. J. Physiol. 261:R1491-R1496.

    Google Scholar 

  108. McGeer, P. L., McGeer, E. G., Kawamata, T., Yamada, T., and Akiyama, H. 1991. Reactions of the immune system in chronic degenerative neurological diseases. Can. J. Neurol. Sci. 18:376–379.

    Google Scholar 

  109. Bauer, J., König, G., Strauss, S., Jonas, U., Ganter, U., Weidemann, A. Mönning, U., Masters, C. L., Volk, B., Berger, M., and Beyreuther, K. 1991. In-vitro maturated human macrophages express Alzheimer's βA-4-amyloid precursor protein indicating synthesis in microglial cells. FEBS Lett. 282:335–340.

    Google Scholar 

  110. Pomara, N., Singh, R., Deptula, D., Chou, J. C. Y., Banay Schwartz, M., and Le Witt, P. A. 1992 Glutamate and other CSF amino acids in Alzheimer's disease. Am. J. Psychiatry 149:251–254.

    Google Scholar 

  111. Therrien, G., and Butterworth, R. F. 1991. Cerebrospinal amino acids in relation to neurological status in experimental portalsystemic encephalopathy. Metabolic Brain Dis. 6:65–74.

    Google Scholar 

  112. Olney, J. W. 1971. Glutamate-induced neuronal necrosis in the infant mouse hypothalamus, an electron microscopic study. J. Neuropathol. Exp. Neurol. 30:75–90.

    Google Scholar 

  113. Kohler, C., and Schwarcz, R. 1982. Monosodium glutamate: increased neurotoxicity after removal of re-uptake sites. Brain Res. 21:485–491.

    Google Scholar 

  114. Ragharendra Rao, V. L., Agrawal, A. K., and Murthy, Ch. R. K. 1991. Ammonia-induced alterations in glutamate and muscimol binding to cerebellar synaptic membranes. Neurosci. Lett. 130:251–254.

    Google Scholar 

  115. Greenamyre, J. T. 1986. The role of glutamate in neurotransmission in neurologic disease. Arch. Neurol. 43:1058–1063.

    Google Scholar 

  116. Greenamyre, J. T., and Young, A. B. 1989. Excitatory amino acids and Alzheimer's disease. Neurobiol. Aging 10:593–602.

    Google Scholar 

  117. Curzon, G., Kantamaneni, B. D., Winch, J., Rochas-Bueno, A., Murray-Lyon, I. M., and Williams, R. 1973. Plasma and brain tryptophan changes in experimental acute hepatic failure. J. Neurochem. 21:137–145.

    Google Scholar 

  118. Record, C. O. 1991. Neurochemistry of hepatic encephalopathy. Gut 32:1261–1263.

    Google Scholar 

  119. Bachmann, C., and Colombo, J. P. 1983. Increased tryptophan uptake into the brain in hyperammonemia. Life Sci. 33:2417–2424.

    Google Scholar 

  120. Lapin, I. P. 1989. Behavioral and convulsant effects of kynurenines. Pages 193–211.in Stone, T. W. (ed.). Quinolinic acid and the kynurenines. CRC Press, Boca Raton.

    Google Scholar 

  121. Bender, D. A. 1989. The kynurenine pathway of tryptophan metabolism. Pages 3–38.in Stone, T. W. (ed.). Quinolinic acid and the kynurenines. CRC Press, Boca Raton.

    Google Scholar 

  122. Foster, A. C., and Schwarcz, R. 1989. Neurotoxic effects of quinolinic acid in the mammalian central nervous system. Pages 173–192.in Stone, T. W. (ed.). Quinolinic acid and the kynurenines. CRC Press, Boca Raton.

    Google Scholar 

  123. Körnhüber, J., Wichart, I., Riederer, P., Kleinberger, G., and Jellinger, K. 1989. Kynurenine in hepatic encephalopathy. Pages 275–281.in Stone, T. W. (ed.). Quinolinic acid and the kynurenines. CRC Press, Boca Raton.

    Google Scholar 

  124. Moroni, F., Lombardi, G., and Carlà, V. 1989. The measurement of quinolinic acid in the mammalian brain: neuropharmacological and physiopathological studies. Pages 53–62,in Stone, T. W. (ed.). Quinolinic acid and the kynurenines. CRC Press, Boca Raton.

    Google Scholar 

  125. Grinde, B. 1989. Kynurenine and lysosomal proteolysis. Pages 91–97,in Stone, T. W. (ed.). Quinolinic acid and the kynurenines. CRC Press, Boca Raton.

    Google Scholar 

  126. Benowitz, L.-I., Rodriguez, W., Paskevich, P., Mufson, E. J., Schenk, D., and Neve, R. L. 1989. The amyloid precursor protein is concentrated in neuronal lysosomes in normal and Alzheimer disease subjects. Exp. Neurol. 106:237–250.

    Google Scholar 

  127. Cole, G. M., Huynh, T. V., and Saitoh, T. 1989. Evidence for lysosomal processing of amyloid beta-protein precursor in cultured cells. Neurochem. Res. 14:933–939.

    Google Scholar 

  128. Cataldo, A. M., and Nixon, R. A. 1990. Enzymatically active lysosomal proteases are associated with amyloid deposits in Alzheimer brain. Proc. Natl. Acad. Sci. U.S.A., 87:3861–3865.

    Google Scholar 

  129. Kawai, M., Cras, P., Richey, P., Tabaton, M., Lowery, D. E., Gonzalez-de Whitt, P. A., Greenberg, B. D., Gambetty, P., and Perry, G. 1992. Subcellular localization of amyloid precursor protein in senile plaques of Alzheimer's disease. Am. J. Pathol. 140:947–958.

    Google Scholar 

  130. Cataldo, A. M., Thayer, C. Y., Bird, E. D., Wheelock, T. R., and Nixon, R. A. 1990. Lysosomal proteinase antigens are prominently localized within senile plaques of Alzheimer's disease: evidence for a neuronal origin. Brain Res. 513:181–192.

    Google Scholar 

  131. Caporaso, G. L., Gandy, S. E., Buxbaum, J. D., and Greengard, P. 1992. Chloroquine inhibits intracellular degradation but not secretion of Alzheimer β-A4 amyloid precursor protein. Proc. Natl. Acad. Sci., U.S.A. 89:2252–2256.

    Google Scholar 

  132. Golde, T. E., Estus, S., Younkin, L. H., Selkoe, D. J., and Younkin, S. G. 1992. Processing of the amyloid protein precursor to potentially amyloidogenic derivatives. Science 255:728–730.

    Google Scholar 

  133. Segelen, P. O. 1983. Inhibitors of lysosomal function. Meth. Enzymol. 96:737–765.

    Google Scholar 

  134. Glimelius, B., Westermark, B., and Wasteson, A. 1977. Ammonium ion interferes with the lysosomal degradation of glycosaminoglycans in cultures of human glial cells. Exp. Cell Res. 107:207–217.

    Google Scholar 

  135. Felipo, V., Minana, M. D., Wallacer, R., and Grisolia, S. 1988. Long-term ingestion of ammonium inhibits lysosomal proteolysis in rat liver. FEBS Lett. 234:213–214.

    Google Scholar 

  136. Felipo, V., Grow, E., Minana, M. D., and Grisolia, S. 1992. Ammonium injection induces an NMDA receptor-mediated proteolysis of MAP-2. FASEB J. 6:1305, Abstr. No 2131.

    Google Scholar 

  137. Cataldo, A. M., Paskevich, P. E., Kominami, E., and Nixon, R. A. 1991. Lysosomal hydrolases of different classes are abnormally distributed in brains of patients with Alzheimer disease. Proc. Natl. Acad. Sci. U.S.A. 88:10998–11002.

    Google Scholar 

  138. Nakamura, Y., Takeda, M., Suzuki, H., Hattori, H., Tada, K., Hariguchi, S., Hashimoto, S., and Nishimura T. 1991. Abnormal distribution of cathepsins in the brain of patients with Alzheimer's disease. Neurosci. Lett. 130:195–198.

    Google Scholar 

  139. Uribe, M. 1989. Nutrition, diet and hepatic encephalopathy. Pages 529–547,in Butterworth, R. F., and Pomier Layrargues, G. (eds.). Hepatic encephalopathy: Pathophysiology and treatment. Human Press, Clifton.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

This paper is dedicated to Rudi Vrba, a pioneer of the neurochemistry of ammonia, and a friend, at the occasion of his 68th birthday.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Seiler, N. Is ammonia a pathogenetic factor in Alzheimer's disease?. Neurochem Res 18, 235–245 (1993). https://doi.org/10.1007/BF00969079

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00969079

Key Words

Navigation