Skip to main content
Log in

Molecular biology of proteasomes

  • Special Issue: Proteasomes And Related Complexes
  • Published:
Molecular Biology Reports Aims and scope Submit manuscript

Abstract

Eukaryotic proteasomes are unusually large proteins with a heterogeneous subunit composition and have been classified into two isoforms with apparently distinct sedimentation coefficients of 20S and 26S. The 20S proteasome is composed of a set of small subunits with molecular masses of 21–32 kDa. The 26S proteasome is a multi-molecular assembly, consisting of a central 20S proteasome and two terminal subsets of multiple subunits of 28–112 kDa attached to the central part in opposite orientations. The primary structures of all the subunits of mammalian and yeast 20S proteasomes have been deduced from the nucleotide sequences of cDNAs or genes isolated by recombinant DNA techniques. These genes constitute a unique multi-gene family encoding homologous polypeptides that have been conserved during evolution. In contrast, little is yet known about the terminal structures of the 26S proteasome, but the cDNA clonings of those of humans are currently in progress. In this review, I summarize available information of the structural features on eukaryotic 20S and 26S proteasomes which has been clarified by molecular-biological methods.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Orlowski M (1990) Biochemistry 29: 10289–10297

    Google Scholar 

  2. Rivett AJ (1993) Biochem J 291: 1–10

    Google Scholar 

  3. Goldberg AL (1992) Eur J Biochem 205: 9–23

    Google Scholar 

  4. Rechsteiner M, Hoffman L & Dubiel W (1993) J Biol Chem 268: 6065–6068

    Google Scholar 

  5. Hershko A & Ciechanover A (1992) Annu Rev Biochem 61: 761–807

    Google Scholar 

  6. Palombella VJ, Rando OJ, Goldberg AL & Maniatis T (1994) Cell 78: 773–785

    Google Scholar 

  7. Murakami Y, Matsufuji S, Kameji T, Hayashi S, Igarashi K, Tamura T, Tanaka K, Ichihara A (1992) Nature 360: 597–599

    Google Scholar 

  8. Goldberg AL & Rock KL (1992) Nature 357: 375–379

    Google Scholar 

  9. Ciechanover, A (1994) Cell 79: 13–21

    Google Scholar 

  10. Palombella VJ, Rando OJ, Goldberg AL & Maniatis T (1994) Cell 78: 773–785

    Google Scholar 

  11. Tanaka K, Yoshimura T, Ichihara A, Kameyama K & Takagi T (1986) J Biol Chem 261: 15204–15207

    Google Scholar 

  12. Tanaka K, Yoshimura T, Ichihara A, Ikai A, Nishigai M, Morimoto M, Sato M, Tanaka N, Katsube Y, Kameyama K & Takagi T (1988) J Mol Biol 203: 985–996

    Google Scholar 

  13. Yoshimura T, Kameyama K, Takagi T, Ikai A, Tokunaga F, Koide T, Tanahashi N, Tamura T, Cejka Z, Baumeister W, Tanaka K, Ichihara A (1993) J Struct Biol 111: 200–211

    Google Scholar 

  14. Lupas A, Kaster AJ & Baumeister W (1994) Enzyme Protein. in press

  15. Kopp F, Dahlmann B & Hendil KB (1992) J Mol Biol 229: 14–19

    Google Scholar 

  16. Peters J-M, Cejka Z, Harris JR, Kleinschmidt JA & Baumeister W (1993) J Mol Biol 234: 932–937

    Google Scholar 

  17. Fujinami K, Tanahashi N, Tanaka K, Ichihara A, Cejka Z, Baumeister W, Miyawaki M, Sato T & Nakagawa H (1994) J Biol Chem 269: 25905–25910

    Google Scholar 

  18. Tanaka K, Tamura T, Yoshimura T & Ichihara A (1992) New Biol 4: 173–187

    Google Scholar 

  19. Tanahashi N, Tsurumi C, Tamura T & Tanaka K (1993) Enzyme Protein 47: 241–251

    Google Scholar 

  20. Hilt W, Heinemeyer W & Wolf DH (1994) in press

  21. Heinemeyer W, Tröndle N, Albrecht G & Wolf DH (1994) Biochemistry 33: 12229–12237

    Google Scholar 

  22. Aki A, Shimbara N, Takashina M, Akiyama K, Kagawa S, Tamura T, Tanahashi N, Yoshimura T, Tanaka K & Ichihara A (1993) J Biochem 115: 257–269

    Google Scholar 

  23. Driscoll J, Brown MG, Finley D & Monaco JJ (1993) Nature 365: 262–264

    Google Scholar 

  24. Gaczynska M, Rock KL & Goldberg AL (1993) Nature 365: 264–267

    Google Scholar 

  25. Akiyama K, Kagawa S, Tamura T, Shimbara N, Takashina M, Hendil KB, Tanaka K & Ichihara A (1994) FEBS Lett 343: 85–88

    Google Scholar 

  26. Akiyama K, Yokota K, Kagawa S, Shimbara N, Tamura T, Akioka A, Nothwang HG, Noda C, Tanaka T & Ichihara A (1994) Science 265: 1231–1234

    Google Scholar 

  27. Tanaka K (1994) J Leukocyte Biol 56: 571–575

    Google Scholar 

  28. Orino E, Tanaka K, Tamura T, Sone S, Ogura T & Ichihara A (1991) FEBS Lett 284: 206–210

    Google Scholar 

  29. Kanayama H, Tamura T, Ugai S, Kagawa S, Tanahashi N, Yoshimura T, Tanaka K & Ichihara A (1992) Eur J Biochem 206: 567–578

    Google Scholar 

  30. Chu-Ping M, Vu JH, Proske RJ, Slaughter CA, DeMartino GN (1994) J Biol Chem 269: 3539–3547

    Google Scholar 

  31. Chu-Ping M, Slaughter CA & DeMartino GN (1994) J Biol Chem 267: 10515–10523

    Google Scholar 

  32. Armon T, Ganoth D & Hershko A (1990) J Biol Chem 265: 20723–6

    Google Scholar 

  33. Dubiel W, Pratt G, Ferrell K & Rechsteiner M (1992) J Biol Chem 267: 22369–22377

    Google Scholar 

  34. Shibuya H, Irie K, Ninomiya-Tsuji J & Matsumoto K (1992) Nature 357: 700–702

    Google Scholar 

  35. Dubiel W, Ferrell K & Rechsteiner M (1993) FEBS Lett 323: 276–278

    Google Scholar 

  36. Nelbock P, Dillon PJ, Perkins A & Rosen CA (1990) Science 248: 1650–1653.

    Google Scholar 

  37. Ohana B, Moore PA, Ruben SM, Southgate CD, Green MR & Rosen CA (1993) Proc Natl Acad Sci USA 90: 138–142

    Google Scholar 

  38. Akiyama Ket al., ms in prep.

  39. Schnall R, Mannhaupt G, Stucka R, Tauer R, Ehnle S, Schwarzlose C, Vetter I & Feldmann H, (1994) Yeast 39: 1141–1155

    Google Scholar 

  40. Swaffield JC, Bromberg JF & Johnston SA (1992) Nature 357: 698–700

    Google Scholar 

  41. Kim Y-J, Björkund S, Li Y, Sayre MH & Kornberg RD (1994) Cell 77: 599–608

    Google Scholar 

  42. Dawson SP, Amond JE, Mayer NJ, Reynolds SE, Billett MA, Kloetzel PM, Tanaka K & Mayer RJ (1994) J Biol Chem in press

  43. DeMartiono GN, Moomaw CR, Zagniko OP, Proske RJ, Chu-Ping M, Afendis SJ, Swaffield JC & Slaughter CA (1994) J Biol Chem 269: 10878–20884

    Google Scholar 

  44. Kominami K, Hisamatsu H, Tanahashi N, Shimizu Y, Tanaka K, Moomaw CR, Slaughter CA, DeMartino GN & Toh-e A (1994) EMBO J submitted

  45. Nisogi H, Kominami K, Tanaka K & Toh-e A (1992) Exp Cell Res 200: 48–57

    Google Scholar 

  46. Ghisiain MS, Udvardy A & Mann C (1993) Nature 366: 358–362

    Google Scholar 

  47. Gordon C, McGurk G, Dillon P, Rosen C & Hastle N (1993) Nature 366: 355–357

    Google Scholar 

  48. Kominami Ket al., ms. in prep.

  49. Tanaka Ket al., ms in prep.

  50. Culbertson MR personal communication

  51. Deveraux Q, Ustrell V, Pickart C & Rechsteiner M (1994) J Biol Chem 269: 7059–7061

    Google Scholar 

  52. Eytan E, Armon T, Heller H, Beck S & Hershko A (1993) J Biol Chem 268: 4668–4674

    Google Scholar 

  53. Ugai S, Tamura T, Tanahashi N, Takai S, Komi N, Chung CH, Tanaka K & Ichihara A (1993) J Biochem 113: 754–768

    Google Scholar 

  54. Realini C, Rogers SW & Rechsteier M (1994) FEBS Lett 348: 109–113

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tanaka, K. Molecular biology of proteasomes. Mol Biol Rep 21, 21–26 (1995). https://doi.org/10.1007/BF00990966

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00990966

Key words

Navigation