Skip to main content
Log in

Deoletion of brain glutathione is accompanied by impaired micochondrial function and decreased N-acetyl aspartate concentration

  • Original Articles
  • Published:
Neurochemical Research Aims and scope Submit manuscript

Abstract

The effect of depletion of reduced glutathione (GSH) on brain mitochondrial function and N-acetyl aspartate concentration has been investigated. Using pre-weanling rats, GSH was depleted by L-buthionine sulfoximine administration for up to 10 days. In both whole brain homogenates and purified mitochondrial preparations complex IV (cytochrome c oxidase) activity was decreased, by up to 27%, as a result of this treatment. In addition, after 10 days of GSH depletion, citrate synthase activity was significantly reduced, by 18%, in the purified mitochondrial preparations, but not in whole brain homogenates, suggesting increased leakiness of the mitochondrial membrane. The whole brain N-acetyl aspartate concentration was also significantly depleted at this time point, by 11%. It is concluded that brain GSH is important for the maintenance of optimum mitochondrial function and that prolonged depletion leads also to loss of neuronal integrity. The relevance of these findings to Parkinson's disease and the inborn errors of glutathione mtabolism are also discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. DiMonte, D. A., Chan, P., and Sandy, M. S. 1992. Glutathione in Parkinson's Disease: A link between oxidative stress and mitochondrial damage? Ann. Neurol. 32:S111–115.

    Google Scholar 

  2. Meister, A., and Larsson, A. 1989. Glutathione synthetase deficiency and other disorders of the γ-glutamyl cycle. Pages 855–868, in Scriver, C. R., Beaudet, A. L., Sly, W. S., and Valle D. (eds), The Metabolic Basis of Inherited Disease, McGraw-Hill, New York.

    Google Scholar 

  3. Jenner, P., Dexter, D. T., Sian, J., Shapira, A. H. V., and Marsden, C. D. 1992. Oxidative stress as a cause of nigral cell death in Parkinson's Disease and incidental Lewy body disease. Ann. Neurol. 32:S82–87.

    Google Scholar 

  4. Boveris, A., and Chance, B. 1973. The mitochondrial generation of hydrogen peroxide. Biochem. J. 134:707–716.

    Google Scholar 

  5. Shan, X., Finkelstien, M., Jones, D. P., and Anders, M. W. 1993. Experimental manipulation of mitochondrial glutathione concentration. Pages 227–234, in Lash L. H., and Jones D. P. (eds), Mitochondrial Dysfunction, Methods in Toxicology Volume 2, Academic Press, London.

    Google Scholar 

  6. Mårtensson, J., Lai, J. C. K., and Meister, A. 1990. A high affinity transport of glutathione is part of a multicomponent system essential for mitochondrial function. Proc. Natl. Acad. Sci. USA 87: 7185–7189.

    Google Scholar 

  7. Zhang, Y., Marcillat, O., Giulivi, C., Ernster, L., and Davies, K. J. A. 1990. The oxidative inactivation of mitochondrial electron transport chain components and ATPase. J. Biol. Chem. 265: 16330–16336.

    Google Scholar 

  8. Schapira, A. H. V., Cooper, J. M., Dexter, D., Clark, J. B., Jenner, P., and Marsden, C. D. 1990. Mitochondrial complex I deficiency in Parkinson's Disease. J. Neurochem. 54:823–827.

    Google Scholar 

  9. Meister, A. 1984. New aspects of glutathione biochemistry and transport: Selective alteration of glutathione metabolism. Fed. Proc. 43:3031–3041.

    Google Scholar 

  10. Masukawa, T., Sai, M., and Tochino, Y 1989. Methods of depleting brain glutathione. Life Sci. 44:417–424.

    Google Scholar 

  11. Jain, A., Mårtensson, J., Stole, E., Auld, P. A. M., and Meister, A. 1991. Glautathione deficiency leads to mitochondrial damage in brain. Proc. Natl. Acad. Sci. USA. 88:1913–1917.

    Google Scholar 

  12. Benzi, G., Curti, D., Pastoris, C., Marzatico, F., Villa, R. F., and Dagani, F. 1991. Sequential damage in mitochondrial complexes by peroxidative stress. Neurochem. Res. 16:1295–1302.

    Google Scholar 

  13. Slivka, A., Mytilineou, C., and Cohen, G. 1987. Histochemical evaluation of glutathione in brain. Brain Res. 409:275–284.

    Google Scholar 

  14. Raps, S. P., Lai, J. C. K., Hertz, L., and Cooper, A. J. L. 1989. Glutathione is present in high concentrations in cultured astrocytes but not cultured neurons. Brain. Res. 493:398–401.

    Google Scholar 

  15. Ratan, R. R., Murphy, T. H., and Baraban, J. M. 1994. Oxidative stress induces apoptosis in embryonic cortical neurons. J. Neurochem. 62:376–379.

    Google Scholar 

  16. Koller, K. J., Zaczek, R., and Coyle, J. T. 1984. N-acetyl-aspartyl-glutamate: regional levels in rat brain and the effect of brain lesions as determined by a new HPLC method. J. Neurochem. 43: 1136–1142.

    Google Scholar 

  17. Moffett, J. R., Namboodiri, M. A. A., Cangro, C. B., and Neale, J. H. 1991. Immunohistochemical localization of N-acetylaspartate in rat brain. Neuroreport 2:131–134.

    Google Scholar 

  18. Simmons, M. L., Frondoza, C. G., and Coyle, J. T. 1991. Immunocytochemical localisation of N-acetyl aspartate with monoclonal antibodies. Neurosci. 45:37–45.

    Google Scholar 

  19. Urenjak, J., Williams, S. R., Gadian, D. G., and Noble, M. 1992. Specific expression of N-acetylaspartate in neurons, oligodendrocyte-type-2 astrocytes and immature oligodendrocytes in vitro. J. Neurochem. 59:55–61.

    Google Scholar 

  20. Calvin, H. I., Medvedovsky, C., and Worgul, B. V. 1986. Near total glutathione depletion and age specific cataracts induced by buthionine sulfoximine. Science 233:553–555.

    Google Scholar 

  21. Lai, J. C. K., and Clark, J. B. 1979. Preparation of synaptic and non-synaptic mitochondria from mammalian brain. Methods Enzymol. 55:51–60.

    Google Scholar 

  22. Wharton, D. C., and Tzagoloff, A. 1967. Cytochrome oxidase from beef heart mitochondria. Methods Enzymol. 10:245–250.

    Google Scholar 

  23. Shepherd, J. A., and Garland, P. B. 1969. Citrate synthase from rat liver. Methods Enzymol. 13:11–19.

    Google Scholar 

  24. Ragan, C. I., Wilson, M. T., Darley-Usmar, V. M., and P. N. Lowe. 1987. Sub-fractionation of mitochondria and isolation of the proteins of oxidative phosphorylation. Pages 79–112, in Darley-Usmar, V. M., Rickwood, D., and Wilson, M. T. (eds), Mitochondria a Practical Approach, IRL Press, Oxford.

    Google Scholar 

  25. Gornall, A. S., Bardwill, C. J., and David, M. M. 1949. Determination of serum proteins by theans of the biuret reaction. J. Biol. Chem. 177:751–766.

    Google Scholar 

  26. Lowry, O. H., Rosebrough, N. J., Farr, A. L., and Randall, R. J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193:265–275.

    Google Scholar 

  27. Riederer, P., Sofic, E., Rausch, W.-D., Schmidt, B., Reynolds, G. P., Jellinger, K., and Youdim, M. B. H. 1989. Transition metals, ferritin, glutathione and ascorbic acid in Parkinsonian brains. J. Neurochem. 52:512–520.

    Google Scholar 

  28. Slivka, A., Spina, M. B., Calvin, H. I., and Cohen, G. 1988. Depletion of brain glutathione in preweanling mice by L-buthionine sulfoximne. J. Neurochem. 50:1391–1393.

    Google Scholar 

  29. Land, J. M., Booth, R. F. G., Berger, R., and Clark, J. B. 1977. Development of mitochondrial energy metabolism in the rat brain. Biochem. J. 164:339–348.

    Google Scholar 

  30. Manning, B. W., and Franklin, M. R. 1990. Induction of rat UDP-glucuronosyltransferase and glutathione S-transferase activities by L-buthionine-S,R-sulfoximine without induction of cytochrome P-450. Toxicol. 65:149–159.

    Google Scholar 

  31. Sokol, R. J., Deveraux, M. W., O'Brien, K., Khandwala, R. A., and Loehr, J. P. 1993. Abnormal hepatic mitochondrial respiration and cytochrome c oxidase activity in rats with long term copper overload. Gastroent. 105:178–187.

    Google Scholar 

  32. Hartley, A., Cooper, J. M., and Shapira, A. H. V. 1993. Iron induced oxidative stress and mitochondrial dysfunction: relevance to Parkinson's disease. Brain Res. 67:349–353.

    Google Scholar 

  33. Thomas, P. K., Cooper, J. M., King, R. H. M., Workman, J. M., Schapira, A. H. V., Goss-Sampson, M. A., and Muller, D. P. R. 1993. Myopathy in vitamin E deficient rats: muscle fibre necrosis associated with disturbances of mitochondrial function. J. Anat. 183:451–461.

    Google Scholar 

  34. Soussi, B., Idstrom, J-P., Schersten, T., and Bylund-Fellenius, A-C. 1990. Cytochrome c oxidase and cardiolipin alterations in response to skeletal muscle ischaemia and reperfusion. Acta. Physiol. Scand. 138:107–114.

    Google Scholar 

  35. Halestrap, A. P., Griffiths, E. J., and Connern, C. P. 1993. Mitochondrial calcium handling and oxidative stress. Biochem. Soc. Trans. 21:353–362.

    Google Scholar 

  36. Reichman, N., Porteous, C. M., and Murphy, M. P. 1994. Cyclosporin A blocks 6-hydroxydopamine-induced efflux of Ca2+ from mitochondria without inactivating the mitochondrial innermembrane pore. Biochem. J. 297:151–155.

    Google Scholar 

  37. Veitch, K., Hombroeckx, A., Caucheteux, D., Pouleur, H., and Hue L. 1992. Global ischaemia induces a biphasic response of the mitochondrial respiratory chain. Biochem. J. 281:709–715.

    Google Scholar 

  38. Mårtensson, J., and Meister, A. 1989. Mitochondrial damage in muscle occurs after marked depletion of glutathione and is prevented by giving glutathione monoester. Proc. Natl. Acad. Sci. USA 86:471–475.

    Google Scholar 

  39. Mårtensson, J., Steinherz, R., Jain, A., and Meister, A. 1989. Glutathione ester prevents buthionine sulfoximine-induced cataracts and lens epithelial cell damage. Proc. Natl. Acad. Sci. USA 86: 8727–8731.

    Google Scholar 

  40. Masini, A., Ceccarelli, D., Gallesi, D., Giovannini, F., and Trenti, T. 1994. Lipid hydroperoxide induced mitochondrial dysfunction following acute ethanol intoxication in rats. The critical role for mitochondrial reduced glutathione. Biochem. Pharmacol. 47:217–224.

    Google Scholar 

  41. Patel, T. B., and Clark, J. B. 1979. Synthesis of N-acetyl-L-aspartate by rat brain mitochondria and its involvement in mitochondrial/cytosolic carbon transport. Biochem. J. 184:539–546.

    Google Scholar 

  42. Dipasquale, B., Marini, A. M., and Youle, R. J. 1991. Apoptosis and DNA degradation by 1-methyl-4-phenylpyridinium in neurons. Biochem. Biophys. Res. Commun. 181:1442–1448.

    Google Scholar 

  43. Tallan, H. H. 1957. Studies on the distribution of N-acetyl-L-aspartic acid in brain. J. Biol. Chem. 224:41–45.

    Google Scholar 

  44. Miyake, M., and Kakimoto, Y. 1981. Developmental changes of N-acetyl-L-aspartic acid, N-acetyl-α-aspartylglutamic acid and β-citryl-L-glutamic acid in different brain regions and spinal cords of rat and guinea pig. J. Neurochem. 37:1064–1067.

    Google Scholar 

  45. Bates, T. E., Williams, S. R., Gadian, D. G., Bell, J. D., Small, R. K., and Iles, R. A. 1989. A1H NMR study of cerebral development in the rat. NMR Biomed. 2:225–229.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heales, R., Davies, S.E.C., Bates, T.E. et al. Deoletion of brain glutathione is accompanied by impaired micochondrial function and decreased N-acetyl aspartate concentration. Neurochem Res 20, 31–38 (1995). https://doi.org/10.1007/BF00995149

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00995149

Key Words

Navigation