Skip to main content
Log in

Glutamatergic synaptic dysfunction in hyperammonemic syndromes

  • Review Article
  • Published:
Metabolic Brain Disease Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Anderson, D.C., King, S.C. and Parsons, S.M. (1982). Proton gradient linkage to active uptake of [3H]-acetylcholine by Torpedo electric organ synaptic vesicles.Biochemistry 21: 3037–3043.

    Google Scholar 

  • Balazs, R., Patel, A.J., and Richter, D. (1973). Metabolic compartments in the brain: their properties and relation to morphological structures. In: Balazs, R., and Cremer, J.E. (eds.), Metabolic compartmentation in the brain. Macmillan, New York, pp. 167–183.

    Google Scholar 

  • Benjamin, A.M. (1981). Control of glutaminase activity in rat brain cortexin vitro: influence of glutamate, phosphate, ammonium, calcium and hydrogen ions.Brain Res. 208: 363–377.

    Google Scholar 

  • Benjamin, A.M. (1982). Ammonia. In: Lajtha, A. (ed.),Handbook of Neurochemistry, Vol. 1, 2nd edition, Plenum Press, New York, pp. 117–137.

    Google Scholar 

  • Benjamin, A.M., and Quastel, J.H. (1974). Fate of L-glutamate in the brain.J. Neurochem. 23: 457–464.

    Google Scholar 

  • Benjamin, A.M., Verjee, Z.H., and Quastel, J.H. (1980). Kinetics of cerebral uptake processesin vitro of L-glutamine, branched chain L-amino acids and L-phenylalanine: effects of ouabain.J. Neurochem. 35: 67–77.

    Google Scholar 

  • Berl, S., and Clarke, D.D. (1983). The metabolic compartmentation concept. In: Hertz, L., Kvamme, E., McGeer, E.G., and Schousboe, A. (eds.), Glutamine, Glutamate and GABA in the Central Nervous System, Alan R. Liss, New York, pp. 205–217.

    Google Scholar 

  • Bed, S., Takagaki, G., Clarke, D.D., and Waelsch, H. (1962). Metabolic compartmentin vivo. Ammonia and glutamic acid metabolism in brain and liver.J. Biol. Chem. 237: 2562–2569.

    Google Scholar 

  • Bessman, S.P., and Pal, N. (1976). The Krebs cycle depletion theory of hepatic coma. In: Grisolia, S., Baguena, R., and Mayer, F. (eds.), Urea Cycle. John Wiley and Sons, New York, pp. 83–89.

    Google Scholar 

  • Bosman, D.K., Chamuleau, RA.F.M., Bovee, W.M.M.J., van Dijk, J. and Deutz, N.E.P. (1991). The glutamate hypothesis studied by brain dialysis and1H-NMR spectroscopy in cerebral cortex of the rat during acute hepatic encephalopathy. In: Bengtsson, F. (ed.). Progress in hepatic encephalopathy and metabolic nitrogen exchange. Boca Raton, New York, pp. 197–208

    Google Scholar 

  • Bradford, H.F., Ward, H.K., and Thomas, A.J. (1978). Glutamine: a major substrate for nerve endings.J. Neurochem. 30: 1453–1459.

    Google Scholar 

  • Bruton, C.J., Coresellis, J.A.N., and Russel, A. (1970). Hereditary hyperammonemia.Brain 93: 423–434.

    Google Scholar 

  • Butterworth, R.F. (1991). Pathophysiology of hepatic encephalopathy: the ammonia hypothesis revisited. In: Bengtsson, F. (ed.), Progress in hepatic encephalopathy and metabolic nitrogen exchange. Boca Raton, New York, pp. 9–21.

    Google Scholar 

  • Butterworth, R.F. (1992). Evidence that hepatic encephalopathy results from a defect of glutamatergic synaptic regulation.Mol. Neuropharmacol. (In Press).

  • Butterworth, R.F., and Giguère, J.-F. (1986). Cerebral amino acids in portal systemic encephalopathy: Lack of evidence for altered -aminobutyric acid (GABA) function.Metab. Brain Dis. 1: 221–228.

    Google Scholar 

  • Butterworth, R.F., Giguère, J.-F., Michaud, J., Lavoie, J., and Pomier Layrargues, G. (1987). Ammonia: key factor in the pathogenesis of hepatic encephalopathy.Neurochem. Palhol. 6: 1–12.

    Google Scholar 

  • Butterworth, R.F., Girard, G., and Giguère, J.-F. (1988). Regional differences in the capacity for ammonia removal by brain following portacaval anastomosis.J. Neurochem. 51: 486–490.

    Google Scholar 

  • Butterworth, R.F., Lavoie, J., Pomier Layrargues, G., and Giguère, J.-F. (1988). Cerebral amino acid changes in hepatic encephalopathy: Biochemical-neuropathological correlations. In: Norenberg, M.D., Hertz, L., and Schousboe, A. (eds.),The Biochemical Pathology of Astrocytes, Alan R. Liss, New York, pp. 481–482.

    Google Scholar 

  • Butterworth, R.F., Le, O., Lavoie, J., and Szerb, J.C. (1991). Effect of portacaval anastomosis on electrically stimulated release of glutamate from rat hippocampal slices.J. Neurochem. 56: 1481–1484.

    Google Scholar 

  • Chapman, A.G., Meldrum, B.S., and Siesjo, B.K. (1977). Cerebral metabolic changes during prolonged epileptic seizure in rat.J. Neurochem. 28: 1025–1033.

    Google Scholar 

  • Colombo, J.P., Bachman, C., Peheim, E., and Beruter, J. (1977). Enzymes of ammonia detoxification after portacaval shunt in the rat II. Enzymes of glutamate metabolism.Enzyme 22: 399–406.

    Google Scholar 

  • Cooper, A.J.L., McDonald, J.M., Gelbard, A.S., Gledhill, R.F., Duffy, T.E. (1979). The metabolic fate of13N-labeled ammonia in rat brain.J. Biol. Chem. 254: 4982–4992.

    Google Scholar 

  • Cooper, A.J.L., Mora, S.N., Cruz, N.F., and Gelbard, A.S. (1985). Cerebral ammonia metabolism in hyperammonemic rats.J.Neurochem. 44: 1716–1723.

    Google Scholar 

  • Cooper, A.J.L., and Plum, F. (1987). Biochemistry and physiology of brain ammonia.Physiol. Rev. 87: 440–519.

    Google Scholar 

  • Cotman, C.W., Monaghan, D.T., and Ganong, H. (1988). Excitatory amino acid neurotransmission: NMDA receptors and Hebb-type synaptic plasticity.Annu. Rev. Neurosci. 11: 61–80.

    Google Scholar 

  • Cremer, J.E., Teal, H.M., Heath, D.F., and Cavangh, J.B. (1977). The influence of portacaval anastomosis on the metabolism of labelled octanoate, butyrate and leucine in rat brain.J. Neurochem. 28: 215–222.

    Google Scholar 

  • Dagani, F., and Erechinska, M. (1987). Relationship among ATP synthesis, K+-gradients and neurotransmitter amino acid levels in isolated rat brain synaptosomes.J. Neurochem. 49: 1229–1241.

    Google Scholar 

  • Darnell, J., Lodish, H., and Baltimore, D. (1990). Molecular Biology. 2nd Ed. Scientific American Books, New York.

    Google Scholar 

  • DeBelleroche, J.S., and Bradford, H.F. (1977). On the site of origin of transmitter amino acids released by depolarization of nerve terminalsin vitro.J. Neurochem. 29: 335–343.

    Google Scholar 

  • Deute, N.E.P., Chamuleau, R.A.F.M., de Graaf, A.A., Bovee, W.M.M.J., and deBeer, R. (1988).In vivo 13P NMR spectroscopy of the rat cerebral cortex during acute hepatic encephalopathy.NMR Biomed. 1: 101–106.

    Google Scholar 

  • Dienel, G., Ryder, E., and Greengard, O. (1977). Distribution of mitochondrial enzymes between the perikaryal and synaptic fractions of immature and adult rat brain.Biochem. Biophys. Acta 496: 484–494.

    Google Scholar 

  • Drejer, J., Larsson, O.M., and Schousboe, A. (1983). Characterization of uptake and release processes for D- and L-aspartate in primary cultures of astrocytes and cerebellar granule cells.Neurochem. Res. 8: 231–243.

    Google Scholar 

  • Erecinska, M. (1987). The neurotransmitter amino acid transport systems. A fresh outlook on an old problem.Biochem. Pharmacol. 36: 3547–3555.

    Google Scholar 

  • Erecinska, M., Pastuzko, A., Wilson, D.F., and Nelson, D. (1987). Ammonia-induced release of neurotransmitters from rat brain synaptosomes: Differences between the effects on amines and amino acids.J. Neurochem. 49: 1258–1265.

    Google Scholar 

  • Erecinska, M., and Silver, I.A. (1990). Metabolism and role of glutamate in mammalian brain.Prog. Neurobiol. 35: 245–296.

    Google Scholar 

  • Fan, P., Lavoie, J., Le, N.L.O., Szerb, J.C., and Butterworth, R.F. (1990). Neurochemical and electrophysiological studies on the inhibitory effect of ammonium ions on synaptic transmission in slices of rat hippocampus: Evidence for a postsynaptic action.Neuroscience 37: 327–334.

    Google Scholar 

  • Ferenci, P., Pappas, S.C., Munson, P.J., Henson, K., and Jones, E.A. (1984). Changes in the status of neurotransmitter receptors in a rabbit model of hepatic encephalopathy.Hepatology 4: 186–191.

    Google Scholar 

  • Fitzpatrick, S.M., Hetherington, H.P., Behar, K.L., and Shulman, R.G. (1989). Effects of acute hyperammonemia on cerebral amino acid metabolism and pHin vivo, measured by1H and31P nuclear magnetic resonance.J. Neurochem. 52: 741–749.

    Google Scholar 

  • Flannery, D.B., Hsia, E.Y., and Wolf, B. (1982). Current status of hyperammonemic syndromes.Hepatology 2: 495–506.

    Google Scholar 

  • Fonnum, F. (1984). Glutamate: a neurotransmitter in mammalian brain.J. Neurochem. 42: 1–11.

    Google Scholar 

  • Foster, A.C., and Fagg, G.E. (1984). Acidic amino acid binding sites in mammalian neuronal membranes: Their characteristics and relationship to synaptic receptors.Brain Res. Rev. 7: 103–164.

    Google Scholar 

  • Giguère, J.-F., and Butterworth, R.F. (1984). Amino acid changes in regions of the CNS in relation to function in experimental portal-systemic encephalopathy.Neurochem. Res. 9: 1309–1321.

    Google Scholar 

  • Gilberstadt, S.J., Gilberstadt, H., Zieve, L., Buegel, B., Collier, R.O., and McClain, C.J. (1980). Psychomotor performance defects in cirrhotic patients without overt encephalopathy.Arch. Intern. Med. 140: 519–521.

    Google Scholar 

  • Goldberg, R.N., Cabal, L.A., Sinatra, F.R., Plajstek, C.E., and Hodgman, J.E. (1979). Hyperammonemia associated with perinatal asphyxia.Pediatrics 64: 336–341.

    Google Scholar 

  • Hamberger, A.C., Chiang, G.H., Nylen, E.S., Scheff, S.W., and Cotman, C.W. (1979a). Glutamate as a CNS transmitter. I. Evaluation of glucose and glutamine as precursors for the synthesis of preferentially released glutamate.Brain Res. 168: 513–530.

    Google Scholar 

  • Hamberger, A.C., Hedquist, B., and Nystrom, B. (1979b). Ammonium ion inhibition of evoked release of endogenous glutamate from hippocampal slices.J. Neurochem. 33: 1295–1302.

    Google Scholar 

  • Hawkins, R.A., Miller, A.L., Nielsen, R.C., Veech, R.L. (1973). The acute action of ammonia on rat brain metabolismin vivo.Biochem. J. 134: 1001–1008.

    Google Scholar 

  • Hindfelt, B., Plum, F., and Duffy, T.E. (1977). Effect of acute ammonia intoxication on cerebral metabolism in rats with portacaval shunts.J. Clin. Invest. 59: 386–396.

    Google Scholar 

  • Hsia, Y.E. (1974). Inherited hyperammonemic syndromes.Gastroenterol. 67: 347–374.

    Google Scholar 

  • Huttenlocher, P.R., Schwartz, A.D., and Klatskin, G. (1969). Reye's syndrome: ammonia intoxication as a possible factor in the encephalopathy.Pediatrics 43: 443–454.

    Google Scholar 

  • Jessy, J., and Murthy, Ch.R.K. (1985). Elevation of transamination of branched chain amino acids in acute ammonia toxicity.Neurochem. Int. 7: 1027–1031.

    Google Scholar 

  • Jessy, J., and Murray, Ch.R.K. (1989). Acute action of ammonia on leucine metabolism in isolated astrocytes, neurons and oligo cells of rat brain. In: Butterworth, R.F., and Layrargues, G.P. (eds.), Hepatic Encephalopathy, Humana Press, Clifton, NJ, pp. 99–111.

    Google Scholar 

  • Jessy, J., Rao, V.L.R., and Murray, Ch.R.K. (1990). Effects of partial hepatectomy on the enzymes of cerebral glutamate and branched-chain amino acid metabolism.Biochem. Int. 20: 107–115.

    Google Scholar 

  • Jones, E.A., and Schafer, D.F., Ferenci, P., and Pappas, S.C. (1984). The neurobiology of hepatic encephalopathy.Hepatology 4: 1235–1242.

    Google Scholar 

  • Kauppinen, R.A., Williams, S.R., Brooks, K.J., and Bachelard, H.S. (1991). Effects of ammonium on energy metabolism and intracellular pH in guinea pig cerebral cortex studied by31P and1H nuclear magnetic resonance spectroscopy.Neurochem. Int. 4: 495–504.

    Google Scholar 

  • Kvamme, E., and Lenda, K. (1981). Evidence for compartmentalization of glutamate in rat brain synaptosomes using the glutamate sensitivity of phosphate-activated glutaminase as a functional test.Neurosci. Lett. 25: 193–198.

    Google Scholar 

  • Kvamme, E., and Lenda, K. (1982). Regulation of glutaminase by exogenous glutamate, ammonia and 2-oxoglutarate in synaptosomal enriched preparation from rat brain.Neurochem. Res. 7: 667–678.

    Google Scholar 

  • Lavoie, J., Giguère, J.-F., Pomier Layrargues, G., and Butterworth, R.F. (1987). Activities of neuronal and astrocytic marker enzymes in autopsied brain tissue from patients with hepatic encephalopathy.Metab. Brain Dis. 2: 283–290.

    Google Scholar 

  • Lazarewicz, J.W., Wroblewski, J.T., and Costa, E. (1990). N-methyl-D-aspartate-sensitive glutamate receptors induce Ca2+ mediated arachidonic acid release in primary cultures of cerebellar granule cells.J. Neurochem. 55: 1875–1881.

    Google Scholar 

  • Levy, L.J., Bolton, R.P., and Losowsky, M.S. (1987). The use of the visual evoked potentials (VEP) in delineating a state of subclinical encephalopathy.J. Hepatol. 5: 211–217.

    Google Scholar 

  • Lockwood, A.H., Yap, E.W.H., Rhoades, H.M., and Wong, W.H. (1991). Altered cerebral blood flow and glucose metabolism in patients with liver disease and minimal encephalopathy.J. Cerebr. Blood Flow and Metab. 11: 331–336.

    Google Scholar 

  • Maddison, J.E., Watson, W.E.J., and Johnston, G.A.R. (1991a). Cerebellar [13 3H]kainate and [3H]AMPA binding in dogs with congenital portosystemic encephalopathy.Neurochem. Int. 4: 511–515.

    Google Scholar 

  • Maddison, J.E., Watson, W.E.J., Dodd, P.R. and Johnston, G.A.R. (1991b). Alterations in cortical3H-kianate and a3H-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid binding in a spontaneous canine model of chronic hepatic encephalopathy.J. Neurochem. 56: 1881–1888.

    Google Scholar 

  • Mans, A.M., Biebuyck, J.F., Davis, D.W., and Hawkins, R.A. (1984). Brain and plasma metabolite abnormalities and the effect of nutritional therapy.J. Neurochem. 43: 697–705.

    Google Scholar 

  • Matheson, D.F., and Van den Berg, C. J. (1975). Ammonia and brain glutamine: inhibition of glutamine degradation by ammonia.Biochem. Soc. Trans. 3: 525–528.

    Google Scholar 

  • Mayer, M.L., and Westbrook, G.L. (1987). The physiology of excitatory amino acids in the vertebrate central nervous system.Prog. Neurobiol. 28: 197–276.

    Google Scholar 

  • McCandless, D.W., and Schenker, S. (1981). Effect of acute ammonia intoxication on ammonia stores in the cerebral reticular activating system.Exp. Brain Res. 44: 325–330.

    Google Scholar 

  • Mena, E.E., and Cotman, C.W. (1985). Pathological concentrations of ammonium ions block L-glutamate uptake.Exp. Neural. 89: 259–263.

    Google Scholar 

  • Moroni, F., Lombardi, G., Moneti, G., and Cortesini, C. (1983). The release and neosynthesis of glutamic acid are increased in experimental models of hepatic encephalopathy.J. Neurochem. 40: 850–855.

    Google Scholar 

  • Naito, S., and Ueda, T. (1985). Characterization of glutamate uptake into synaptic vesicles.J. Neurochem. 44: 99–109.

    Google Scholar 

  • Nelson, G., and Seligson, D. (1953). Studies on blood ammonia in normal and shock states.Surgery 34: 1–8.

    Google Scholar 

  • Nicholls, D., and Attwell, D. (1990). The release and uptake of excitatory amino acids.Trends in Pharmacol. 11: 462–468.

    Google Scholar 

  • Nicholls, D., and Sihra, T.S. (1986). Synaptosomes possess an exocytotic pool of glutamate.Nature 321: 772–773.

    Google Scholar 

  • Nicholls, D., Sihra, T.S. and Sanchez-Prieto, J. (1987). Calcium-dependent and -independent release of glutamate from synaptosomes monitored by continuous fluorometry.J. Neurochem. 49: 50–57.

    Google Scholar 

  • Nicoletti, F., Wroblewski, J.T., Fadda, E., Hynie, S., Alho, H., and Costa, E. (1989). Characterization of kainate and quisqualate receptors and their interaction in primary cultures of cerebellar granule cells. In: Barnard, E.A., and Costa, E. (eds.),Allosteric Modulation of Amino Acid Receptors: Therapeutic Implications. Raven Press, New York, pp. 301–317.

    Google Scholar 

  • Norenberg, M.D. (1981). The astrocyte in liver disease.Adv. Cell Neurobiol. 2: 303–352.

    Google Scholar 

  • Norenberg, M.D. (1989). The use of cultured astrocytes in the study of hepatic encephalopathy, In: Butterworth, R.F., and Pomier Layrargues, G. (eds.),Hepatic Encephalopathy: Pathophysiology and Treatment. Humana Press, Clifton, New Jersey, pp. 215–229.

    Google Scholar 

  • Norenberg, M.D., Mozes, L.W., Papendick, R.E., and Norenberg, L.O.B. (1985). Effect of ammonia on glutamate, GABA and rubidium uptake by astrocytes.Annal. Neural. 18: 149–162.

    Google Scholar 

  • Novelli, A., Nicoletti, F., Wroblewski, J.T., Alho, H., Costa, E., and Guidotti, A. (1987). Excitatory amino acid receptors coupled with guanylate cyclase in primary cultures of cerebellar granule cells.J. Neurosci. 7: 40–47.

    Google Scholar 

  • O'Connor, J.E., Guerri, C., and Grisolia, S. (1984). Effects of ammonia on synaptosomal membranes.Biochem. Biophys. Res. Commun. 119: 516–523.

    Google Scholar 

  • Peterson, C., Giguère, J.-F., Cotman, C.W., and Butterworth, R.F. (1990). Selective loss of N-methyl-D-aspartate sensitive L-[3H]glutamate binding sites in rat brain following portacaval anastomosis.J. Neurochem. 55: 386–390.

    Google Scholar 

  • Plum, F., and Hindfelt, B. (1976). The neurological complications of liver disease. In: Vinken, P.J., and Bruyn, G.W. (eds.),Handbook of Clinical Neurology, Vol. 27, Metabolic and Deficiency Diseases of the Central Nervous System, North Holland, Amsterdam, pp. 349–377.

    Google Scholar 

  • Pomier Layrargues, G., Nguyen, N.H., Faucher, C., Giguère, J.-F., and Butterworth, R.F. (1991). Subclinical hepatic encephalopathy in cirrhotic patients: Prevalence and Relationship to liver function.Clin. Gastroenterol. 5: 121–125.

    Google Scholar 

  • Raabe W. (1989). Neurophysiology of ammonia intoxication. InHepatic Encephalopathy: Pathophysiology and Treatment (R.F. Butterworth and G. Pomier Layrargues, eds.), Humana Press, Clifton, N. J., pp. 49–77.

    Google Scholar 

  • Rao, V.L.R., Agrawal, A.K., and Murthy, Ch.R.K. (1991). Ammonia-induced alterations in glutamate and muscimol binding to cerebellar synaptic membranes.Neurosci. Lett. 130: 251–254.

    Google Scholar 

  • Rao, V.L.R., and Murthy, Ch.R.K. (1991a). Variations in the effects of L-methionine-DL-sulfoximine on the activity of cerebral γ-glutamyl transpeptidase in rats as a function of age.Neurosci. Lett. 126: 13–17.

    Google Scholar 

  • Rao, V.L.R., and Murthy, Ch.R.K. (1991b). Hyperammonemic alterations in the uptake and release of glutamate and aspartate by rat cerebellar preparations. Neurosci. Lett.130: 49–52.

    Google Scholar 

  • Rao, V.L.R. and Murthy, Ch.R.K. (1992). Hyperammonemic alterations in the metabolism of glutamate and aspartate in rat cerebellar astrocytes.Neurosci. Lett, (in press).

  • Ratnakumari, L., and Murthy, Ch.R.K. (1989). Activities of pyruvate dehydrogenase, enzymes of citric acid cycle and aminotransferases in the subcellular fractions of cerebral cortex in normal and hyperammonemic rats.Neurochem. Res. 14: 221–228.

    Google Scholar 

  • Ratnakumari, L., and Murthy, Ch.R.K. (1990). Effect of Methionine Sulfoximine on pyruvate dehydrogenase, citric acid cycle enzymes and aminotransferases in the subcellular fractions isolated from rat cerebral cortex.Neurosci. Lett. 108: 328–334.

    Google Scholar 

  • Sadasivudu, B., Murthy, C.R.K., Rao, G.N., and Swamy, M. (1983). Studies on acetylcholinesterase and gamma-glutamyl transpeptidase in mouse brain in ammonia toxicity.J. Neurosci. Res. 9: 127–134.

    Google Scholar 

  • Sadasivudu, B., and Rao, T.I. (1974). Studies on the distribution of urea cycle enzymes in different regions of rat brain.J. Neurochem. 23: 267–269.

    Google Scholar 

  • Sanchez-Prieto, J., and Gonzalez, P. (1988). Occurrence of a large Ca2+-independent release of glutamate during anoxia in isolated nerve terminals (synaptosomes).J. Neurochem. 50: 1322–1324.

    Google Scholar 

  • Sandoval, M.E., Horch, P., and Cotman, C.W. (1978). Evaluation of glutamate as a hippocampal neurotransmitter: glutamate uptake and release from synaptosomes.Brain Res. 142: 285–299.

    Google Scholar 

  • Schmidt, W., Wolf, G., Greingreiff, K., Meier, M., and Reum, T. (1990). Hepatic encephalopathy influences high-affinity uptake of transmitter glutamate and aspartate into the hippocampal formation.Metab. Brain Dis. 5: 19–31.

    Google Scholar 

  • Shank, R.P., and Campbell, G.L.-M. (1982). Glutamine and alpha-ketoglutarate uptake and metabolism by nerve terminal enriched material from mouse cerebellum.Neurochem. Res. 7: 601–616.

    Google Scholar 

  • Shank, R.P., and Campbell, G. L.-M. (1984). Amino acid uptake, content and metabolism by neuronal and glial enriched cellular fractions from mouse cerebellum.J. Neurosci. 4: 58–69.

    Google Scholar 

  • Stallcup, W.B., Buloch, K., and Baetge, E.E. (1979). Coupled transport of glutamate and sodium in a cerebellar nerve cell line.J. Neurochem. 32: 57–65.

    Google Scholar 

  • Storm-Mathiesen, J., Lenkes, A.K., Bore, A.T., Vaaland, J.L., Edminson, P., Haug, F.-M.S., and Ottersen, O.P. (1983). First visualization of glutamate and GABA in neurons by immunocytochemistry.Nature 301: 517–520.

    Google Scholar 

  • Subbalakshmi, G.Y.C.V., and Murthy, Ch.R.K. (1983). Acute metabolic effects of ammonia on the enzymes of glutamate metabolism in isolated astroglial cells.Neurochem. Int. 5: 593–597.

    Google Scholar 

  • Subbalakshmi, G.Y.C.V., and Murthy, Ch.R.K. (1985). Differential response of enzymes of glutamate metabolism in neuronal perikarya and synaptosomes in acute hyperammonemia in rat.Neurosci. Lett. 59: 121–126.

    Google Scholar 

  • Szerb, J.C. and Butterworth, R.F. (1992). Effect of ammonium ions on synaptic transmission in the mammalian central nervous system.Prog. Neurobiol. (in press).

  • Thomson, A.M. (1990). Glycine is a coagonist at the NMDA receptor/channel complex.Prog. Neurobiol. 35: 53–74.

    Google Scholar 

  • Tossman, U., Delin, A., Eriksson, L.S., and Ungerstedt, U. (1987). Brain cortical amino acids measured by intracerebral dialysis in portacaval shunted rats.Neurochem. Res. 12: 265–271.

    Google Scholar 

  • Vaccarino, F., Guidotti, A., and Costa, E. (1987). Ganglioside inhibition of glutamate-mediated protein kinase C translocation in primary cultures of neurons.Proc. Nat. Acad. Sci. (USA).84: 8707–8711.

    Google Scholar 

  • Valero, A., Alroy, G., Eisenkraft, B., and Itskovitch, J. (1974). Ammonia metabolism in chronic obstructive pulmonary disease with special reference to congestive right ventricular failure.Thorax 29: 703–709.

    Google Scholar 

  • Van den Berg, C. J. (1973). A model of compartmentation in mouse brain based on glucose and acetate metabolism. In: Balazs, R., and Cremer, J.E. (eds.),Metabolic Compartmentation in the Brain. Macmillan, New York, pp. 137–166.

    Google Scholar 

  • Van den Berg, C.J., Matheson, D.F., Ronda, G., Reijnierse, G.L.A., Blokhuis, G.G.D., Kroon, M.C., Clarke, D.D., and Garfinkel, D. (1975). A model of glutamate metabolism in brain: a biochemical analysis of a heterogeneous structure. In: Berl, S., Clarke, D.D., and Schneider, D. (eds.),Metabolic compartmentation and neurotransmission. Plenum Press, New York, pp. 709–723.

    Google Scholar 

  • Waniewski, R.A., and Martin, D.L. (1986). Exogenous glutamate is metabolized to glutamine and exported by rat primary astrocyte cultures.J. Neurochem. 47: 304–313.

    Google Scholar 

  • Watkins, J.C., and Evans, R.H. (1981). Excitatory amino acid transmitters.Ann. Rev. Pharmacol. Toxicol. 21: 165–204.

    Google Scholar 

  • Wroblewski, J.T., and Danysz, W. (1989). Modulation of glutamate receptors: molecular mechanisms and functional implications.Ann. Rev. Pharmacol. Toxicol. 29: 441–474.

    Google Scholar 

  • Yu, A.C.H., Schousboe, A., and Hertz, L. (1984). Influence of pathological concentrations of ammonia on the metabolic fate of14C-labeled glutamate in astrocytes in primary cultures.J. Neurochem. 42: 594–597.

    Google Scholar 

  • Yudkoff, M., Nissim, I., Nelson, D., Lin, Z.-P., and Erecinska, M. (1991). Glutamate dehydrogenase reaction as a source of glutamic acid in synaptosomes.J. Neurochem. 57: 153–160.

    Google Scholar 

  • Yudkoff, M., Nissim, I., Pleasure, D., Kim, S., Hummeler, K., and Segal, S. (1983). Ammonia and amino acid interaction in cultured brain cells: Studies with15NH3 in glutamine, glutamate, and GABA. In: Hertz, L.E.G., and Schousboe, A. (eds.),Glutamate, Glutamine and GABA in the Central Nervous System, Alan R. Liss., New York, pp. 389–398.

    Google Scholar 

  • Zieve, L. (1985). Encephalopathy due to short- and medium-chain fatty acids. In: McCandless, D.W. (ed.),Cerebral Energy Metabolism and Metabolic Encephalopathy. Plenum Press, New York. pp. 163–177.

    Google Scholar 

  • Zieve, L., and Brunner, G. (1985). Encephalopathy due to mercaptans and phenols. In: McCandless, D.W. (ed.),Cerebral Energy Metabolism and Metabolic Encephalopathy. Plenum Press, New York. pp. 179–201.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rao, V.L.R., Murthy, C.R.K. & Butterworth, R.F. Glutamatergic synaptic dysfunction in hyperammonemic syndromes. Metab Brain Dis 7, 1–20 (1992). https://doi.org/10.1007/BF01000437

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01000437

Keywords

Navigation