Skip to main content
Log in

Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells

Implication of the tumor suppressor genes for gene therapy

  • Published:
Journal of Neuro-Oncology Aims and scope Submit manuscript

Summary

Human (U251, U87, U343) and rat glioma cell lines (C6, 9L) were examined by the reverse transcriptase-polymerase chain reaction and subsequent nucleotide sequencing analysis to see whether they express wild type (wt)-p53 or mutated form (mut)-p53 messages. Results showed that U87, U343, and C6 cells expressed wt-p53 messages whereas U251 and 9L cells expressed mut-p53 messages. All these cell lines were transfected with wt-p53 cDNA or the s-myc gene linked to the mouse mammary tumor virus (MMTV) promoter. Of several G418-resistant clones obtained from each transfection, a few expressed the s-Myc or wt-p53 proteins. Independent of mutations in the intrinsic p53 gene, the cellular growthin vitro and tumorigenicity in nude mice of these clones were drastically suppressed, the extent of suppression being correlated with the expression level of the transfected gene. Flow-cytometric analysis demonstrated that both p53 and s-Myc arrested the cell cycle at the G1/S boundary. These data suggest that these genes having negative effects on tumor cell proliferation could be used in gene therapy of gliomas, which are caused by alteration of the p53 gene or by some other genetic change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Rasheed BKA, Bigner SH: Genetic alterations in glioma and medulloblastoma. Cancer Meta Rev 10: 289–299, 1991

    Google Scholar 

  2. Vogelstein B, Fearon ER, Hamilton SR, Kern SR, Presinger AG, Leppert M, Nakamura Y, White R, Smits AAM, Bos JL: Genetic alterations during colorectal tumor development. N Engl J Med 319: 525–532, 1988

    PubMed  Google Scholar 

  3. Takahashi T, Nau MM, Chiba I, Birrer MJ, Rosenberg RK, Vinocour M, Levitt M, Pass H, Gazdar AF, Minna JD: p53: A frequent target for genetic abnormalities in lung cancer. Science 246: 491–494, 1989

    PubMed  Google Scholar 

  4. Nigro JM, Baker SJ, Preisinger AC, Jessup JM, Hostetter R, Cleary K, Bigner SH, Davidson N, Baylin S, Devilee P, Glover T, Collins FS, Weston A, Modali R, Harris CC, Vogelstein B: Mutations in the p53 gene occur in diverse human tumor types. Nature 342: 705–708, 1989

    PubMed  Google Scholar 

  5. Chiba I, Takahashi T, Mau MM, D'Amico D, Curiel DT, Mitsudomi T, Buchhagen DL, Carbone D, Piantadosi S, Koga H, Reissman PT, Slamon DJ, Holmes EC, Minna JD: Mutations in the p53 gene are frequent in primary, resected non-small cell lung cancer. Oncogene 5: 1603–1610, 1990

    PubMed  Google Scholar 

  6. Levine AJ, Momand J, Finlay CA: The p53 tumour suppressor gene. Nature 351: 453–456, 1991

    PubMed  Google Scholar 

  7. Hollstein M, Sidransky D, Bogelstein B, Harris CC: p53 mutations in human cancers. Science 253: 49–53, 1991

    PubMed  Google Scholar 

  8. Scheffner M, Munger K, Byrne JC, Howley PM: The state of the p53 and retinoblastoma genes in human cervical carcinoma cell lines. Proc Natl Acad Sci USA 88: 5523–5527, 1991

    PubMed  Google Scholar 

  9. Ohgaki H, Eibl RH, Wiestier OD, Yasargil MG, Newcomb EW, Kleihues P: p53 mutations in nonastrocytic human brain tumors. Cancer Res 51: 6202–6205, 1991

    PubMed  Google Scholar 

  10. Sidransky D, Mikkelsen T, Schwechheimer K, Rosenblum ML, Cavanee W, Vogelstein B: Clonal expansion of p53 mutant cells is associated with brain tumour progression. Nature 355: 846–847, 1992

    PubMed  Google Scholar 

  11. Fults D, Pedone CA, Thomas GA, White R: Allelotype of human malignant astrocytoma. Cancer Res 50: 5784–5789, 1990

    PubMed  Google Scholar 

  12. Frankel RH, Bayona W, Koslow M, Newcomb EW: p53 mutations in human malignant gliomas: comparison of loss of heterozygosity with mutation frequency. Cancer Res 52: 1427–1433, 1992

    PubMed  Google Scholar 

  13. Sugiyama A, Kume A, Nemoto K, Lee SY, Asami Y, Nemoto F, Nishimura S, Kuchino Y: Isolation and characterization of s-myc, a member of the rat myc gene family. Proc Natl Acad Sci USA 86: 9144–9148, 1989

    PubMed  Google Scholar 

  14. Lee SY, Sugiyama A, Sueoka N, Kuchino Y: Point mutation of the neu gene in rat neural tumor RT4-AC cells: Suppression of tumorigenicity by s-Myc. Jpn J Cancer Res 81: 1085–1088, 1990

    PubMed  Google Scholar 

  15. Kuchino Y, Sugiyama A, Asami Y, Kume A, Lee SY: Isolation of the rat s-myc gene having tumor suppressing activity. In: Kunudson AGJr, Stanbridge EJ, Sugimura T, Terada M, Watanabe S (eds) Genetic Basis for Carcinogenesis, Tumor Suppressor Genes and Oncogenes, pp241–247, Japan Sci Soc Press, Tokyo, 1990

    Google Scholar 

  16. Zakut-Houri R, Bienz-Tadmor B, Givol D, Oren M: Human p53 cullular tumor antigen: cDNA sequence and expression in COS cells. EMBO J 4: 1251–1255, 1985

    PubMed  Google Scholar 

  17. Soussi T, de Fromentel CC, Breugnot C, May Evelyne: Nucleotide sequence of a cDNA encoding the rat p53 nuclear oncoprotein. Nucleic Acid Res 16: 11384, 1988

    PubMed  Google Scholar 

  18. Mercer WE, Shields MT, Amin M, Sauve GJ, Appella E, Romano JW, Ullrich SJ: Negative growth regulation in a glioblastoma tumor cell line that conditionally expresses human wildtype p53. Proc Natl Acad Sci USA 87: 6166–6170, 1990

    PubMed  Google Scholar 

  19. Linzer DIH, Levine AJ: Characterization of a 54k Dalton cullular SV40 tumor antigen present in SV40-transformed cells and uninfected embryonal carcinoma cells. Cell 17: 43–52, 1979

    PubMed  Google Scholar 

  20. Lane DP, Crawford LV: T antigen is bound to a host protein in SV40-tranformed cells. Nature 278: 261–263, 1979

    PubMed  Google Scholar 

  21. Harlow E, Williamson NM, Ralston R, Helfman DM, Adams TE: Molecular cloning andin vitro expression of a cDNA clone for human cellular tumor antigen p53. Mol Cell Biol 5: 1601–1610, 1985

    PubMed  Google Scholar 

  22. Lamb P, Crawford L: Characterization of the human p53 gene. Mol Cell Biol 6: 1379–1385, 1986

    PubMed  Google Scholar 

  23. Finlay CA, Hinds PW, Levine AJ: The p53 proto-oncogene can act as a suppressor of transformation. Cell 57: 1083–1093, 1989

    PubMed  Google Scholar 

  24. Lane DP: p53, guardian of the genome. Nature 358: 15–16, 1992

    PubMed  Google Scholar 

  25. Livingstone LR, White A, Sprouse J, Livanos E, Jacks T, Tlsty TD: Altered cell cycle arrest and gene amplification potential accompany loss of wild-type p53. Cell 70: 923–935, 1992

    PubMed  Google Scholar 

  26. Yin Y, Tainsky MA, Bischoff FZ, Strong LC, Wahl GM: Wild-type p53 restores cell cycle control and inhibits gene amplification in cells with mutant p53 alleles. Cell 70: 937–948, 1992

    PubMed  Google Scholar 

  27. Kastan MB, Zhan Q, El-Deiry WS, Carrier F, Jacks T, Walsh WV, Plunkett BS, Vogelstein B, Fornace AJJr.: A mammalian cell cycle checkpoint pathway utilizing p53 and GADD45 is defective in Ataxia-Telangiectasia. Cell 71: 587–597, 1992

    PubMed  Google Scholar 

  28. Donehower LA, Harvey M, Slagle BL, McArthur MJ, Montgomery CA Jr., Butel JS, Bradley A: Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours. Nature 356: 215–221, 1992

    PubMed  Google Scholar 

  29. Green MR: When the products of oncogenes and anti-oncogenes meet. Cell 56: 1–3, 1989

    PubMed  Google Scholar 

  30. Chen P-L, Chen Y, Bookstein R, Lee W-H: Genetic mechanisms of tumor suppression by the human p53 gene. Science 250: 1576–1580, 1990

    PubMed  Google Scholar 

  31. Dang CV: c-Myc oncoprotein function. Biochim Biophys Acta 1072: 103–113, 1991

    PubMed  Google Scholar 

  32. Blackwood EM, Eisenman RN: Max: A helix-loop-helix zipper protein that forms a sequence-specific DNA-binding complex with Myc. Science 251: 1211–1217, 1991

    PubMed  Google Scholar 

  33. Blackwood EM, Luscher B, Eisenham RN: Myc and Max associatein vivo. Genes Dev 6: 71–80, 1992

    PubMed  Google Scholar 

  34. Anderson WF: Human gene therapy. Science 256: 808–813, 1992

    PubMed  Google Scholar 

  35. Culver KW, Ram Z, Wallbridge, Ishii H, Oldfield EH, Blaese RM:In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256: 1550–1552, 1992

    PubMed  Google Scholar 

  36. Asai A, Miyagi Y, Sugiyama A, Nagashima Y, Kanemitsu H, Obinata M, Mishima K, Kuchino Y: The s-Myc protein having the ability to induce apoptosis is selectively expressed in rat embryo chondrocytes. Oncogene (in press).

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Asai, A., Miyagi, Y., Sugiyama, A. et al. Negative effects of wild-type p53 and s-Myc on cellular growth and tumorigenicity of glioma cells. J Neuro-Oncol 19, 259–268 (1994). https://doi.org/10.1007/BF01053280

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01053280

Key words

Navigation