Skip to main content
Log in

Models for describing absorption rate and estimating extent of bioavailability: Application to cefetamet pivoxil

  • Published:
Journal of Pharmacokinetics and Biopharmaceutics Aims and scope Submit manuscript

Abstract

Five absorption rate models have been compared for describing cefetamet data in 34 adults after oral administration of cefetamet pivoxil with food alone or in combination with either an antacid or an H2 antagonist. A sequential zero- then first-order input process provided the most flexible description of the absorption rate of cefetamet. If the first-order rate constant is linked to the zero- order input parameters the model can be interpreted as the consequence of solubility-limited absorption. While a sequential input is theoretically reasonable to assume, the first-order process appeared to be independent of the zero-order input. A population-based approach was applied to estimate the effect of dose and gastric pH increase on absorption and disposition. There appeared to be a dose-associated change in several parameters. The most marked change was an increase in volume of distribution of cefetamet. Treatments expected to increase gastric pH slowed the first-order component of the absorption process. Three models for estimating the extent of bioavailability have been compared using observations from 18 adults and 13 children receiving iv cefetamet and oral cefetamet pivoxil on two separate occasions. The most consistent estimates of the disposition parameters and the extent of bioavailability were achieved with the sequential zero- and first- order model under the assumption that steady slate volume of distribution and nonrenal clearance were the same after iv and oral treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ASC:

Ascending oral dose study

CL :

Total body clearance

CL NR :

Nonrenal clearance

CL R :

Renal clearance

C p :

Observed cefetamet plasma concentration

CV :

Coefficient of variation

Dose :

Dose of cefetamet

F :

Unavailability

FAD:

unavailability study in adults

FCH:

Bioavailability study in children

F K0 :

Fraction of the dose absorbed by a zero-order process

fPH :

Factor describing the influence of antacid or H2-blocker comedication

KA:

First-order absorption rate

K0:

Zero-order absorption rate

K0KA:

Sequential independent zero- and first-order absorption rate

K0KA* :

Sequential linked zero- and first-order absorption rate

k a :

Absorption rate constant when absorption is estimated by the sequential independent zero- and first-order absorption rate

k *a :

Absorption rate constant when absorption is estimated by the sequential linked zero- and first-order absorption rate

K m :

Michaelis-Menten constant

LL :

Log Likelihood

Λ1 :

Elimination rate constant for first exponential

ΛZ :

Elimination rate constant for second exponential

MM:

Saturable absorption rate

pH:

−Log hydrogen ion concentration

PH:

Interaction study with antacid and H2-blocker

pwr :

Power function parameter

SC :

Schwarz criterion

SE :

Standard error

SLOPEv SS :

Factor characterizing the influence on volume of distribution

T :

Time after administration

T 1/2 :

Half-life for terminal phase

T K0 :

Period of time during which the absorption rate is zero-order (constant)

T lag :

Lag time before absorption commences

V 1 :

Volume of the central (first) compartment

V max :

Maximum absorption rate

Vss :

Volume of distribution at steady state

Vss,pop :

Mean values forV ss in the population

Vss,TV :

Typical value ofV ss predicted in the population

References

  1. R. Wise, J. M. Andrews, and L. J. V. Piddock. In vitro activity of Ro 15-8074 and Ro 19-5247, two orally administered cephalosporin metabolites.Antimicrob. Agents Chemother. 29:1067–1072 (1986).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  2. K. Stoeckel, Y. K. Tam, and J. Kneer. Pharmacokinetics of oral cefetamet pivoxil (Ro 15-8075) and intravenous cefetamet (Ro 15-8074) in humans: a review.Curr. Med. Res. Opinion 11:432–441 (1989).

    Article  CAS  Google Scholar 

  3. Y. K. Tam, J. Kneer, U. C. Dubach, and K. Stoeckel. Pharmacokinetics of cefetamet pivoxil (Ro 15-8075) with ascending oral doses in normal healthy volunteers.Antimicrob. Agents Chemother. 33:957–959 (1989).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  4. R. A. Blouin, J. Kneer, R. J. Ambros, and K. Stoeckel. Influence of antacid and ranitidine on the pharmacokinetics of oral cefetamet pivoxil.Antimicrob. Agents Chemother. 34:1744–1748 (1990).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  5. P. J. McNamara, J. Kneer, R. J. Ambros, U. C. Dubach, and K. Stoeckel. Absolute bioavailability and bioequivalence of the final 250 mg (/048) and 500 mg (/047) tablet formulations of cefetamet pivoxil in normal volunteers. Data on file, F. Hoffmann-La Roche.

  6. W. L. Hayton, R. A. Walstad, E. Thurmann-Nielsen, T. Kufaas, J. Kneer, R. J. Ambros, H. E. Rugstad, E. Monn, E. Bodd, and K. Stoeckel. Pharmacokinetics of intravenous cefetamet and oral cefetamet pivoxil in children.Antimicrob. Agents Chemother. 35:720–720 (1991).

    Article  CAS  PubMed Central  PubMed  Google Scholar 

  7. B. G. Reigner, W. Couet, J.-P. Guedes, J. B. Fourtillan, and T. N. Tozer. Saturable rate of absorption of cefatrizine after its oral administration to humans.J. Pharmacokin. Biopharm. 18:17–34 (1990).

    Article  CAS  Google Scholar 

  8. R. Wyss and F. Bucheli. Determination of cefetamet and its orally active ester, cefetamet pivoxil, in biological fluids by high-performance liquid chromatography.J. Chromatog. Biomed. Appl. 430(1):81–92 (1988).

    Article  CAS  Google Scholar 

  9. N. H. G. Holford.MKMODEL V4, Biosoft, Cambridge, 1990.

    Google Scholar 

  10. G. Schwarz. Estimating the dimension of a model.Ann. Statist. 6:461–464 (1978).

    Article  Google Scholar 

  11. S. L. Beal and L. B. Sheiner. The NONMEM System.Am. Statist. 34:118 (1980).

    Article  Google Scholar 

  12. A. Boechmann, L. B. Sheiner, and S. Beal.NONMEM Users Guide-Part V, NONMEM Project Group, University of California, San Francisco, 1990.

    Google Scholar 

  13. P. Mojaverian, K. Chan, A. Desai, and V. John. Gastrointestinal transit of a solid indigestible capsule as measured by radiotelemetry and dual gamma scintigraphy.Pharm. Res. 6:719–724 (1989).

    Article  CAS  PubMed  Google Scholar 

  14. W. R. Couet, B. G. Reigner, J.-P. Guedes, and T. N. Tozer. Theoretical model for both saturable rate and extent of absorption: simulations of cefatrizine data.J. Pharmacokin. Biopharm. 19:271–285 (1991).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Holford, N.H.G., Ambros, R.J. & Stoeckel, K. Models for describing absorption rate and estimating extent of bioavailability: Application to cefetamet pivoxil. Journal of Pharmacokinetics and Biopharmaceutics 20, 421–442 (1992). https://doi.org/10.1007/BF01061464

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01061464

Key words

Navigation