Skip to main content
Log in

Interpretation of the filtered 100- to 1000-Hz electroretinogram

  • Published:
Documenta Ophthalmologica Aims and scope Submit manuscript

Abstract

We examined the possibility that the 100- to 1000-Hz oscillatory potentials could represent the derivative version of the 1- 1000-Hz electroretinogram. Corneal electroretinograms were recorded from rabbits by means of bandwidths of 1–1000 Hz, 10–1000 Hz, 30–1000 Hz and 100–1000 Hz (6 dB of attenuation). Derivatives of the 1- to 1000-Hz electroretinogram had a waveform similar to the 100- to 1000-Hz signals, but of larger amplitude (21.9% ± 16.7% larger, n = 16). Similarly, integration of the 100- to 1000-Hz signal resulted in a wave-form whose amplitude was 60% of the original 1- to 1000-Hz electroretinogram. Our results suggest that some aspect of the morphologic changes seen when the low-frequency cutoff of the recording bandwidth of the ERG is increased from 1 Hz to 100 Hz could be explained with a simple derivative model. The oscillatory potentials may be significant contributors to the morphogenesis of the 1- to 1000-Hz electroretinogram.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Brown KT, Wiesel TN. Localization of origins of electroretinogram components by intraretinal recording in the intact cat eye. J Physiol 1961; 158: 257–80.

    Google Scholar 

  2. Heynen H, Van Norren D. Origin of the electroretinogram in the intact macaque eye, II: Current source-density analysis. Vision Res 1985; 25: 709–15.

    PubMed  Google Scholar 

  3. Witkovsky P, Nelson J, Ripps H. Action spectra and adaptation properties of carp photoreceptors. J Gen Physiol 1973; 61: 401–23.

    PubMed  Google Scholar 

  4. Dick E, Miller RF, Bloomfield S. Extracellular K + activity changes related to electroretinogram components, II: Rabbit (e-type) retinas. J Gen Physiol 1985; 85: 911–31.

    PubMed  Google Scholar 

  5. Miller RF. Role of K + in generation of b-wave of electroretinogram. J Neurophysiol 1973; 36: 28–38.

    PubMed  Google Scholar 

  6. Miller RF, Dowling JE. Intracellular responses of the Muller (glial) cells of mudpuppy retina: Their relation to the b-wave of the electroretinogram. J Neurophysiol 1970; 33: 323–41.

    PubMed  Google Scholar 

  7. Heynen H, Wachtmeister L, Van Norren D. Origin of the oscillatory potentials in the primate retina. Vision Res 1985; 25: 709–15.

    PubMed  Google Scholar 

  8. Ogden TE. The oscillatory waves of the primate electroretinogram. Vision Res 1973; 13: 1059–74.

    PubMed  Google Scholar 

  9. Wachtmeister L, Dowling JE. The oscillatory potentials of the mudpuppy retina. Invest Ophthalmol Vis Sci 1978; 17: 1176–88.

    PubMed  Google Scholar 

  10. Yonemura D, Masuda Y, Hatta M. The oscillatory potential in the electroretinogram. Jpn J Physiol 1963; 13: 129–37.

    PubMed  Google Scholar 

  11. Karwoski C. Retinal extracellular potential responses not evoked by light. In: Heckenlively JR, Arden GB, eds. Principles and practice of clinical electrophysiology of vision. St. Louis: Mosby Year Book, 1991: 129–31.

    Google Scholar 

  12. Wachtmeister L. Oscillatory potential recording. In: Heckenlively JR, Arden GB, eds. Principles and practice of clinical electrophysiology of vision. St. Louis: Mosby Year Book, 1991: 322–7.

    Google Scholar 

  13. Lachapelle P. A possible contribution of the optic nerve to the photopic oscillatory potentials. Clin Vision Sci 1990; 5: 421–6.

    Google Scholar 

  14. Lachapelle P, Little JM, Polomeno RC. The photopic electroretinogram in congenital stationary night blindness with myopia. Invest Ophthalmol Vis Sci 1983; 24: 442–50.

    PubMed  Google Scholar 

  15. Speros P, Price J. Oscillatory potentials. History, techniques and potential use in the evaluation of disturbances of retinal circulation. Surv Ophthalmol 1981; 25: 237–52.

    PubMed  Google Scholar 

  16. Algvere P, Westbeck S. Human ERG in response to double flashes of light during the course of dark adaptation: A Fourier analysis of the oscillatory potentials. Vision Res 1972; 12: 195–214.

    PubMed  Google Scholar 

  17. Asi H, Leibu R, Perlman I. Frequency-domain analysis of the human corneal electroretinogram. Clin Vision Sci 1992; 7: 9–19.

    Google Scholar 

  18. Gur M, Zeevi Y. Frequency-domain analysis of the human electroretinogram. J Opt Soc Am 1980; 70: 53–9.

    PubMed  Google Scholar 

  19. McCulloch JA, Orpin JW, Waisberg P, Parker JA. Frequency analysis of the human dark-adapted electroretinogram. Can J Ophthalmol 1972; 7: 189–98.

    PubMed  Google Scholar 

  20. Tsuchida Y, Kawasaki K, Fujimura K, Jacobson JH. Isolation of faster components in the electroretinogram and visual evoked responses in man. Am J Ophthalmol 1973; 75: 846–52.

    PubMed  Google Scholar 

  21. Lachapelle P, Molotchnikoff S. Components of the electroretinogram: A reappraisal. Doc Ophthalmol 1986; 63: 337–48.

    PubMed  Google Scholar 

  22. Odom V. Amplifiers and special-purpose data acquisition systems. In: Heckenlively JR, Arden GB, eds. Principles and practice of clinical electrophysiology of vision. St. Louis: Mosby Year Book, 1991: 183–92.

    Google Scholar 

  23. Lachapelle P, Blain L. A new speculum electrode for electroretinography. J Neurosci Methods 1990; 32: 245–9.

    PubMed  Google Scholar 

  24. Maccabee PJ, Hassan NF, Cracco RQ, Schiff JA. Short latency somatosensory and spinal evoked potentials: Power spectra and comparison between high pass analog and digital filter. Electroencephalogr Clin Neurophysiol 1986; 65: 177–87.

    PubMed  Google Scholar 

  25. Rossini PM, Cracco RQ, Cracco JB, House WJ. Short latency somatosensory evoked potentials evoked to pereoneal nerve stimulatior: Scalp topography and the effect of different frequency filters. Electroencephalogr Clin Neurophysiol 1981; 52: 540–52.

    PubMed  Google Scholar 

  26. Suprynowicz VA. Introduction to electronics. Reading, Mass. Addison- Wesley Publishing Co. Inc., 1966: 79–85.

    Google Scholar 

  27. Khani-Oskouee K, Sieving PA. A digital band-pass filter for electrophysiology recording systems. In: Heckenlively JR, Arden GB, eds. Principles and practice of clinical electrophysiology of vision. St. Louis: Mosby Year Book, 1991: 205–10.

    Google Scholar 

  28. Buckser S.Analysis of the multiple peaks in the ERG b-wave. The clinical value of electroretinography, ISCERG Symp (Ghent 1966), 1968: 183–93.

  29. Heck J, Rendahl I. Components of the human electroretinogram. Acta Physiol Scand 1957; 39: 167–75.

    PubMed  Google Scholar 

  30. Lachapelle P. Analysis of the photopic electroretinogram recorded before and after dark adaptation. Can J Ophthalmol 1987; 22: 354–61.

    PubMed  Google Scholar 

  31. Lachapelle P, Benoit J, Guité P, Ngoc Tran C, Molotchnikoff S. The effect of iodoacetic acid on the electroretinogram and oscillatory potentials in rabbits. Doc Ophthalmol 1990; 75: 7–14.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Lachapelle, P., Benoit, J. Interpretation of the filtered 100- to 1000-Hz electroretinogram. Doc Ophthalmol 86, 33–46 (1994). https://doi.org/10.1007/BF01224626

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01224626

Key words

Navigation