Skip to main content
Log in

Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits

  • Published:
Evolutionary Ecology Aims and scope Submit manuscript

Summary

We present models of adaptive change in continuous traits for the following situations: (1) adaptation of a single trait within a single population in which the fitness of a given individual depends on the population's mean trait value as well as its own trait value; (2) adaptation of two (or more) traits within a single population; (3) adaptation in two or more interacting species. We analyse a dynamic model of these adaptive scenarios in which the rate of change of the mean trait value is an increasing function of the fitness gradient (i.e. the rate of increase of individual fitness with the individual's trait value). Such models have been employed in evolutionary game theory and are often appropriate both for the evolution of quantitative genetic traits and for the behavioural adjustment of phenotypically plastic traits. The dynamics of the adaptation of several different ecologically important traits can result in characters that minimize individual fitness and can preclude evolution towards characters that maximize individual fitness. We discuss biological circumstances that are likely to produce such adaptive failures for situations involving foraging, predator avoidance, competition and coevolution. The results argue for greater attention to dynamical stability in models of the evolution of continuous traits.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abrams, P. A. (1986) Adaptive responses of predators to prey and prey to predators: the failure of the arms race analogy.Evolution 40, 1229–47.

    Google Scholar 

  • Abrams, P. A. (1989) The importance of intraspecific frequency dependent selection in modelling competitive coevolution.Evol. Ecol. 3, 215–20.

    Google Scholar 

  • Abrams, P. A. (1990) The evolution of antipredator traits in prey in response to evolutionary change in predators.Oikos 59, 147–56.

    Google Scholar 

  • Abrams, P. A. (1991) The relationship between food availability and foraging effort: effects of life history and time-scale.Ecology 72, 1242–52.

    Google Scholar 

  • Abrams, P. A. (1992) Adaptive foraging by predators as a cause of predator—prey cycles.Evol. Ecol. 6, 56–72.

    Google Scholar 

  • Altenberg, L. (1991) Chaos from linear frequency-dependent selection.Am. Nat. 138, 51–68.

    Google Scholar 

  • Brown, J. S. and Vincent, T. L. (1987) Coevolution as an evolutionary game.Evolution 41, 66–79.

    Google Scholar 

  • Case, T. J. (1982) Coevolution in resource-limited competition communities.Theor. Pop. Biol. 21, 69–91.

    Google Scholar 

  • Charlesworth, B. (1990) Optimization models, quantitative genetics, and mutation.Evolution 44, 520–38.

    Google Scholar 

  • Christiansen, F. B. (1991) On conditions for evolutionary stability for a continuous varying character.Am. Nat. 138, 37–50.

    Google Scholar 

  • Cressman, R., Dash, A. T. and Akin, E. A. (1986) Evolutionary games and two species population dynamics.J. Math. Biol. 23, 221–30.

    PubMed  Google Scholar 

  • Curtsinger, J. W. (1984) Evolutionary principles for polynomial models of frequency dependent selection.Proc. Natl Acad. Sci. USA 81, 2840–2.

    Google Scholar 

  • Endler, J. A. (1986)Natural Selection in the Wild. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Eshel, I. (1983) Evolutionary and continuous stability.J. Theor. Biol. 103, 99–111.

    Google Scholar 

  • Eshel, I. and Akin, E. (1983) Coevolutionary instability of mixed Nash solutions.J. Math. Biol. 18, 123–34.

    PubMed  Google Scholar 

  • Eshel, I. and Motro, U. (1981) Kin selection and strong evolutionary stability of mutual help.Theor. Pop. Biol. 19, 420–33.

    Google Scholar 

  • Felsenstein, J. (1979) Excursions along the interface between disruptive and stabilizing selection.Genetics 93, 773–95.

    Google Scholar 

  • Fisher, R. A. (1930)The Genetical Theory of Natural Selection. Clarendon Press, Oxford, UK (reprinted 1958, Dover, New York).

    Google Scholar 

  • Grant, P. (1986)Ecology and Evolution of Darwin's Finches. Princeton University Press, Princeton, NJ, USA.

    Google Scholar 

  • Haldane, J. B. S. (1932)The Causes of Evolution. Harper and Brothers, London, UK.

    Google Scholar 

  • Hartl, D. and Clark, A. (1988)Principles of Population Genetics, 2nd edn. Sinauer, Sunderland, MA, USA.

    Google Scholar 

  • Hastings, A. and Hom, C. (1990) Multiple equilibria and maintenance of additive genetic variance in a model of pleiotropy.Evolution 44, 1153–63.

    Google Scholar 

  • Hofbauer, J. and Sigmund, K. (1988) The theory of evolution and dynamical systems. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Holling, C. S. (1966) The functional response of invertebrate predators to prey density.Mem. Entomol. Soc. Can. 48, 1–86.

    Google Scholar 

  • Huxley, J. S. (1938) The present standing of the theory of sexual selection. InEvolution (G. R. de Beer, ed.), pp. 11–42. Clarendon Press, Oxford.

    Google Scholar 

  • Iwasa, Y., Pomiankowski, A. and Nee, S. (1991) The evolution of costly mate preferences. II. The ‘handicap’ principle.Evolution 45, 1431–42.

    Google Scholar 

  • Krebs, J. R. and Davies, N. B. (1991)Behavioural Ecology, 3rd edn. Blackwell Scientific, London, UK.

    Google Scholar 

  • Lande, R. (1976) Natural selection and random genetic drift in phenotypic evolution.Evolution 30, 314–34.

    Google Scholar 

  • Lande, R. (1981) Models of speciation by sexual selection on polygenic traits.Proc. Natl Acad. Sci. USA 78, 3721–5.

    Google Scholar 

  • Lande, R. (1982) A quantitative genetic theory of life history evolution.Ecology 63, 607–15.

    Google Scholar 

  • Lawlor, L. R. and Maynard Smith, J. (1976) The coevolution and stability of competing species.Am. Nat. 110, 79–99.

    Google Scholar 

  • Lessard, S. (1990) Evolutionary stability: one concept, several meanings.Theor. Pop. Biol. 37, 159–70.

    Google Scholar 

  • Matsuda, H. (1988) Interaction in a prey predator system and the theory of coevolution.Bull. Pop. Ecol. Soc. 45, 3–10 (in Japanese).

    Google Scholar 

  • Maynard Smith, J. (1982)Evolution and the Theory of Games. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Maynard Smith, J. and Brown, R. L. W. (1986) Competition and body size.Theor. Pop. Biol. 30, 166–79.

    Google Scholar 

  • Maynard Smith, J. and Price, G. R. (1973) The logic of animal conflict.Nature 246, 15–18.

    Google Scholar 

  • Murdoch, W. W. (1969) Switching in general predators: experiments on predator specificity and stability of prey populations.Ecol. Monog. 39, 335–54.

    Google Scholar 

  • Pacala, S. W. and Roughgarden, J. (1983) The evolution of resource partitioning in a multidimensional resource space.Theor. Pop. Biol. 22, 127–45.

    Google Scholar 

  • Packer, C. and Abrams, P. A. (1990) Are cooperative groups more vigilant than selfish groups?J. Theor. Biol. 142, 341–57.

    Google Scholar 

  • Parker, G. A. and Hammerstein, P. (1985) Game theory and animal behaviour. InEvolution: Essays in Honour of John Maynard Smith (P. J. Greenwood, P. H. Harvey and M. Slatkin, eds), pp. 73–94. Cambridge University Press, Cambridge, UK.

    Google Scholar 

  • Parker, G. A. and Maynard Smith, J. (1990) Optimality theory in evolutionary biology.Nature 348, 27–33.

    Google Scholar 

  • Pease, C. (1984) On the evolutionary reversal of competitive dominance.Evolution 38, 109–15.

    Google Scholar 

  • Roughgarden, J. (1978) Coevolution in ecological systems III. Co-adaptation and equilibrium population size. InEcological Genetics (P. F. Brussard, ed.). Springer-Verlag, Berlin.

    Google Scholar 

  • Roughgarden, J. (1979)The Theory of Population Genetics and Evolutionary Ecology: An Introduction. MacMillan, NY, USA.

    Google Scholar 

  • Roughgarden, J. (1983) The theory of coevolution. InCoevolution (D. J. Futuyma and M. Slatkin, eds), pp. 33–64. Sinauer, Sunderland, MA, USA.

    Google Scholar 

  • Roughgarden, J. (1987) Community coevolution: a comment.Evolution 41, 1130–4.

    Google Scholar 

  • Rummel, J. D. and Roughgarden, J. (1985) The theory of faunal build-up for competition communities.Evolution 39, 1009–33.

    Google Scholar 

  • Seger, J. and Hamilton, W. D. (1988) Parasites and sex. InThe Evolution of Sex (R. E. Michod and B. R. Levin, eds), pp. 176–93. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Stenseth, N. Chr. and Maynard Smith, J. (1984) Coevolution in ecosystems: Red Queen evolution or stasis?Evolution 38, 870–80.

    Google Scholar 

  • Takada, T. and Kigami, J. (1991) The dynamical attainability of ESS in evolutionary games.J. Math. Biol. 29, 513–30.

    PubMed  Google Scholar 

  • Taper, M. (1988) The coevolution of resource competition: appropriate and inappropriate models of character displacement.Bull. Pop. Ecol. Soc. (Japan) 44, 45–54.

    Google Scholar 

  • Taper, M. and Case, T. J. (1992) Models of character displacement and the theoretical robustness of taxon cycles.Evolution 46, 317–33.

    Google Scholar 

  • Taylor, P. D. (1989) Evolutionary stability in one-parameter models under weak selection.Theor. Pop. Biol. 36, 125–43.

    Google Scholar 

  • Thomas, B. (1985) On evolutionary stable sets.J. Math. Biol. 22, 105–15.

    Google Scholar 

  • Turelli, M. (1988) Population genetic models for polygenic variation and evolution.Proc. Second Int. Conf. Quantitative Genetics (B. S. Weir, E. J. Eisen, M. M. Goodman and G. Nankoong, eds), pp. 601–18. Sinauer Associates, Sunderland, MA, USA.

    Google Scholar 

  • Vincent, T. L. and Brown, J. S. (1988) The evolution of ESS theory.Ann. Rev. Ecol. Syst. 19 423–44.

    Google Scholar 

  • Wiggins, D. A. (1991) Natural selection on body size and laying date in the tree swallow.Evolution 45, 1169–74.

    Google Scholar 

  • Wilson, D. S. and Turelli, M. (1986) Stable underdominance and the evolutionary invasion of empty niches.Am. Nat. 127, 835–61.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Abrams, P.A., Matsuda, H. & Harada, Y. Evolutionarily unstable fitness maxima and stable fitness minima of continuous traits. Evol Ecol 7, 465–487 (1993). https://doi.org/10.1007/BF01237642

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01237642

Keywords

Navigation