Skip to main content
Log in

The genome of feline immunodeficiency virus

  • Brief Review
  • Published:
Archives of Virology Aims and scope Submit manuscript

Summary

Feline immunodeficiency virus (FIV) is a member of the genusLentivirus of the familyRetroviridae. FIV can infect T lymphocytes and monocytes/macrophages in vitro and in vivo, and causes an acquired immunodeficiency syndrome-like disease in cats. Several isolates of FIV from geographically distant countries have been molecularly cloned. There is considerable heterogeneity especially in Env gene among the FIV isolates and they can be divided into two or more subgroups. Like other lentiviruses, FIV has a complex genome structure. Gag gene encodes matrix, capsid and nucleocapsid proteins, and Pol gene encodes protease, reverse transcriptase, dUTPase and integrase. The dUTPase is not present in the primate lentiviruses but present in the nonprimate lentiviruses. Env gene encodes surface and transmembrane envelope glycoproteins. In addition to the structural and enzymatic proteins, at least three more genes (Vif, ORF A, Rev) are present in FIV. Vif is related to the infectivity of the cell-free viruses. Rev functions in the stability and transport of incompletely spliced viral RNAs from the nucleus to cytoplasm and is indispensable for virus replication. Although the Tat protein of the primate lentiviruses is essential for virus replication, ORF A (putative Tat gene) of FIV is not essential for virus replication in established feline T lymphoblastoid cell lines. However, the ORF A gene product is related to the efficient replication of the virus in primary peripheral blood lymphocytes. In the long terminal repeat (LTR) of FIV, there are many putative binding sites for enhancer/promoter proteins. Among these binding sites, the putative AP-1 site is important for basal promoter activity of the LTR and responsible for the T cell activation signal through protein kinase C, however the site is not required for the virus replication in established feline T lymphoblastoid cell lines. Comparative study of the molecular biology of lentiviruses revealed that the genome structure, splicing pattern and functional enhancer protein-binding sites of FIV are more similar to those of the ruminant lentiviruses than those of the primate lentiviruses.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ahmad N, Venkatesan S (1988)Nef protein of HIV-1 is a transcriptional repressor of HIV-1 LTR. Science 241: 1481–1485

    Google Scholar 

  2. Akari H, Sakuragi J, Takebe Y, Tomonaga K, Kawamura M, Fukasawa M, Miura T, Shinjo T, Hayami M (1992) Biological characterization of human immunodeficiency virus type 1 and type 2 mutants in human peripheral blood mononuclear cells. Arch Virol 123: 157–167

    Google Scholar 

  3. Alizon M, Wain-Hobson S, Montagnier L, Sonigo P (1986) Genetic variability of the AIDS virus: nucleotide sequence analysis of two isolates from African patients. Cell 46: 63–74

    Google Scholar 

  4. Arya SK, Gallo RC (1988) Human immunodeficiency virus type 2 long terminal repeat: analysis of regulatory elements. Proc Natl Acad Sci USA 85: 9753–9757

    Google Scholar 

  5. Bachelerie F, Alcami J, Hazan U, Israel N, Goud B, Arenzana-Seisdedos F, Virelizier J-L (1990) Constitutive expression of human immunodeficiency virus (HIV)nef protein in human astrocytes does not influence basal or induced HIV long terminal repeat activity. J Virol 64: 3059–3062

    Google Scholar 

  6. Benn S, Rutledge R, Folks T, Gold J, Baker L, McCormick J, Feorino P, Piot P, Quinn T, Martin M (1985) Genomic heterogeneity of AIDS retroviral isolates from North America and Zaire. Science 230: 949–951

    Google Scholar 

  7. Carvalho M, Derse D (1991) Mutational analysis of the equine infectious anemia virus Tat-responsive element. J Virol 65: 3468–3474

    Google Scholar 

  8. Clavel F, Guyader M, Guétard D, Sallé M, Montagnier L, Alizon M (1986) Molecular cloning and polymorphism of the human immune deficiency virus type 2. Nature 324: 691–695

    Google Scholar 

  9. Clements JE, Wong-Staal F (1992) Molecular biology of lentiviruses. Semin Virol 3: 137–146

    Google Scholar 

  10. Dayton AI, Sodroski JG, Rosen CA, Goh WC, Haseltine WA (1986) Thetrans-activator gene of the human T cell lymphotropic virus type III is required for replication. Cell 44: 941–947

    Google Scholar 

  11. Dingwall C, Ernberg I, Gait MJ, Green SM, Heaphy S, Karn J, Lowe AD, Singh M, Skinner MA, Valerio R (1989) Human immunodeficiency virus 1 tat protein binds trans-activation-responsive region (TAR) RNAin vitro. Proc Natl Acad Sci USA 86: 6925–6929

    Google Scholar 

  12. Egberink HF, Ederveen J, Montelaro RC, Pedersen NC, Horzinek MC, Koolen MJM (1990) Intracellular proteins of feline immunodeficiency virus and their antigenic relationship with equine infectious anaemia virus proteins. J Gen Virol 71: 739–743

    Google Scholar 

  13. Elder JH, Lerner DL, Hasselkus-Light CS, Fontenot DJ, Hunter E, Luciw PA, Montelaro RC, Phillips TR (1992) Distinct subsets of retroviruses encode dUTPase. J Virol 66: 1791–1794

    Google Scholar 

  14. Elder JH, Schnolzer M, Hasselkus-Light CS, Henson M, Lerner DA, Phillips TR, Wagaman PC, Kent SBH (1993) Identification of proteolytic processing sites within the Gag and Pol polyproteins of feline immunodeficiency virus. J Virol 67: 1869–1876

    Google Scholar 

  15. Feng S, Holland EC (1988) HIV-1tat trans-activation requires the loop sequence withintar. Nature 334: 165–167

    Google Scholar 

  16. Fisher AG, Ensoli B, Ivanoff L, Chamberlain M, Petteway S, Patner L, Gallo RC, Wong-Staal F (1987) Thesor gene of HIV-1 is required for efficient virus transmission in vitro. Science 237: 888–893

    Google Scholar 

  17. Fisher AG, Feinberg MB, Josephs SF, Harper ME, Marselle LM, Reyes G, Gonda MA, Aldovini A, Debouk C, Gallo RC, Wong-Staal F (1986) Thetrans-activator gene of HTLV-III is essential for virus replication. Nature 320: 367–371

    Google Scholar 

  18. Gabuzda DH, Hess JL, Small JA, Clements JE (1989) Regulation of the visna virus long terminal repeat in macrophages involves cellular factors that bind sequences containing AP-1 sites. Mol Cell Biol 9: 2728–2733

    Google Scholar 

  19. Gdovin SL, Clements JE (1992) Molecular mechanisms of visna virus tat: identification of the targets for transcriptional activation and evidence for a post-transcriptional effect. Virology 188: 438–450

    Google Scholar 

  20. Greene WK, Meers J, Chadwick B, Carnegie PR, Robinson WF (1993) Nucleotide sequence of Australian isolates of the feline immunodeficiency virus: comparison with other feline lentiviruses. Arch Virol 132: 369–379

    Google Scholar 

  21. Guy B, Acres B, Kieny MP, Lecocq JP (1990) DNA binding factors that bind to the negative regulatory element of the human immunodeficiency virus 1: regulation bynef. J AIDS 3: 797–809

    Google Scholar 

  22. Guy B, Kieny MP, Riviere Y, Peuch CL, Dott K, Girard M, Montagnier L, Lecocq J-P (1987) HIV F/3′orf encodes a phosphorylated GTP-binding protein resembling an oncogene product. Nature 330: 266–269

    Google Scholar 

  23. Guyader M, Emerman M, Montagnier L, Peden K (1989) VPX mutants of HIV-2 are infectious in established cell lines but display a severe defect in peripheral blood lymphocytes. EMBO J 8: 1169–1175

    Google Scholar 

  24. Guyader M, Emerman M, Sonigo P, Clavel F, Montagnier L, Alizon M (1987) Genome organization and transactivation of the human immunodeficiency virus type 2. Nature 326: 662–669

    Google Scholar 

  25. Hammes SR, Dixon EP, Malim MH, Kim JH, Cullen BR, Greene WC (1989) Nef protein of human immunodeficiency virus type 1: evidence against its role as a transcriptional inhibitor. Proc Natl Acad Sci USA 86: 9549–9553

    Google Scholar 

  26. Hauber J, Cullen BR (1988) Mutational analysis of thetrans-activation-responsive region of the human immunodeficiency virus 1 long terminal repeat. J Virol 62: 673–679

    Google Scholar 

  27. Hess JL, Pyper JM, Clements JE (1986) Nucleotide sequence and transcriptional activity of the caprine arthritis-encephalitis virus long terminal repeat. J Virol 60: 385–393

    Google Scholar 

  28. Hess JL, Small JA, Clements JE (1989) Sequences in the viana virus long terminal repeat that control transcriptional activity and respond to viraltrans-activation: involvement of AP-1 sites in basal activity andtrans-activation. J Virol 63: 3001–3015

    Google Scholar 

  29. Jakobovits A, Smith DH, Jakobovits EB, Capon DJ (1988) A discrete element 3′ of human immunodeficiency virus 1 (HIV-1) and HIV-2 mRNA initiation sites mediates transcriptional activation by an HIVtrans-activator. Mol Cell Biol 8: 2555–2561

    Google Scholar 

  30. Kawaguchi Y, Miyazawa T, Horimoto T, Itagaki S, Fukasawa M, Takahashi E, Mikami T (1991) Activation of feline immunodeficiency virus long terminal repeat by feline herpesvirus type 1. Virology 184: 449–454

    Google Scholar 

  31. Kawaguchi Y, Norimine J, Miyazawa T, Kai C, Mikami T (1992) Sequences within the feline immunodeficiency virus long terminal repeat that regulate gene expression and respond to activation by feline herpesvirus type 1. Virology 190: 465–468

    Google Scholar 

  32. Kestler HW, Li Y, Naidu YM, Butler CV, Ochs MF, Jaenal G, King NW, Daniel MD, Desrosiers RC (1988) Comparison of simian immunodeficiency virus isolates. Nature 331: 619–622

    Google Scholar 

  33. Kestler HW, Ringler DJ III, Mori K, Panicali DL, Sehgal PK, Daniel MD, Desrosiers RC (1991) Importance of thenef gene for maintenance of high virus loads and for development of AIDS. Cell 65: 651–662

    Google Scholar 

  34. Kim S, Ikeuchi K, Byrn R, Groopman J, Baltimore D (1989) Lack of a negative influence on viral growth by thenef gene of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 86: 9544–9548

    Google Scholar 

  35. Kiyomasu T, Miyazawa T, Furuya T, Shibata R, Sakai H, Sakuragi J, Fukasawa M, Maki N, Hasegawa A, Mikami T, Adachi A (1991) Identification of the feline immunodeficiency virusrev gene activity. J Virol 65: 4539–4542

    Google Scholar 

  36. Lewis N, Williams J, Rekosh D, Hammarskjold M-L (1990) Identification of acis-acting element in human immunodeficiency virus type 2 (HIV-2) that is responsive to the HIV-1rev and human T-cell leukemia virus types I and IIrex proteins. J Virol 64: 1690–1697

    Google Scholar 

  37. Li Y, Naidu YM, Daniel MD, Desrosiers RC (1989) Extensive genetic variability of simian immunodeficiency virus from African green monkeys. J Virol 63: 1800–1802

    Google Scholar 

  38. Lu Y, Stenzel M, Sodroski JG, Haseltine WA (1989) Effects of long terminal repeat mutations on human immunodeficiency virus type 1 replication. J Virol 63: 4115–4119

    Google Scholar 

  39. Luciw PA, Cheng-Mayer C, Levy JA (1987) Mutational analysis of the human immunodeficiency virus: theorf-B region down-regulates virus replication. Proc Natl Acad Sci USA 84: 1434–1438

    Google Scholar 

  40. Maki N, Miyazawa T, Fukasawa M, Hasegawa A, Hayami M, Miki K, Mikami T (1992) Molecular characterization and heterogeneity of feline immunodeficiency virus isolates. Arch Virol 123: 29–45

    Google Scholar 

  41. Malim MH, Hauber J, Le S-Y, Maizel JV, Cullen BR (1989) The HIV-1rev trans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338: 254–257

    Google Scholar 

  42. Miyazawa T, Fukasawa M, Hasegawa A, Maki N, Ikuta K, Takahashi E, Hayami M, Mikami T (1991) Molecular cloning of a novel isolate of feline immunodeficiency virus biologically and genetically different from the original U.S. isolate. J Virol 65: 1572–1577

    Google Scholar 

  43. Miyazawa T, Kohmoto M, Kawaguchi Y, Tomonaga K, Toyosaki T, Ikuta K, Adachi A, Mikami T (1993) The AP-1 binding site in the feline immunodeficiency virus long terminal repeat is not required for virus replication in feline T lymphocytes. J Gen Virol 74: 1573–1580

    Google Scholar 

  44. Miyazawa T, Mikami T (1993) Biological nature of feline immunodeficiency virus. J Vet Med Sci 55: 519–526

    Google Scholar 

  45. Morikawa S, Bishop DHL (1992) Identification and analysis of thegag-pol ribosomal frameshift site of feline immunodeficiency virus. Virology 186: 389–397

    Google Scholar 

  46. Morikawa S, Booth TF, Bishop DHL (1991) Analyses of the requirements for the synthesis of virus-like particles by feline immunodeficiency virusgag using baculovirus vectors. Virology 183: 288–297

    Google Scholar 

  47. Morikawa S, Lutz H, Aubert A, Bishop DHL (1991) Identification of conserved and variable regions in the envelope glycoprotein sequences of two feline immunodeficiency viruses isolated in Zurich, Switzerland. Virus Res 21: 53–63

    Google Scholar 

  48. Muesing MA, Smith DH, Capon DJ (1987) Regulation of mRNA accumulation by a human immunodeficiency virus trans-activator protein. Cell 48: 691–701

    Google Scholar 

  49. Niederman TMJ, Thielan BJ, Ratner L (1989) Human immunodeficiency virus type 1 negative factor is a transcriptional silencer. Proc Natl Acad Sci USA 86: 1128–1132

    Google Scholar 

  50. Ogawa K, Shibata R, Kiyomasu T, Higuchi I, Kishida Y, Ishimoto A, Adachi A (1989) Mutational analysis of the human immunodeficiency virusvpr open reading frame. J Virol 63: 4110–4114

    Google Scholar 

  51. Olmsted RA, Barnes AK, Yamamoto JK, Hirsch VM, Purcell RH, Johnson PR (1989) Molecular cloning of feline immunodeficiency virus. Proc Natl Acad Sci USA 86: 2448–2452

    Google Scholar 

  52. Olmsted RA, Hirsch VM, Purcell RH, Johnson PR (1989) Nucleotide sequence analysis of feline immunodeficiency virus: genome organization and relationship to other lentiviruses. Proc Natl Acad Sci USA 86: 8088–8092

    Google Scholar 

  53. Pedersen NC, Ho EW, Brown ML, Yamamoto JK (1987) Isolation of a T-lymphotropic virus from domestic cats with an immunodeficiency-like syndrome. Science 235: 790–793

    Google Scholar 

  54. Phillips TR, Lamont C, Konings DAM, Shacklett BL, Hamson CA, Luciw PA, Elder JH (1992) Identification of the Rev transactivation and Rev-responsive element of feline immunodeficiency virus. J Virol 66: 5464–5471

    Google Scholar 

  55. Phillips TR, Talbott RL, Lamont C, Muir S, Lovelace K, Elder JH (1990) Comparison of two host cell range variants of feline immunodeficiency virus. J Virol 64: 4605–4613

    Google Scholar 

  56. Rigby MA, Holmes EC, Pistello M, Mackay A, Leigh Brown AJ, Neil JC (1993) Evolution of structural proteins of feline immunodeficiency virus: molecular epidemiology and evidence of selection for change. J Gen Virol 74: 425–436

    Google Scholar 

  57. Rosen CA, Sodroski JG, Haseltine WA (1985) The location ofcis-acting regulatory sequences in the human T cell lymphotropic virus type III (HTLV-III/LAV) long terminal repeat. Cell 41: 813–823

    Google Scholar 

  58. Rosen CA, Terwilliger E, Dayton A, Sodroski JG, Haseltine WA (1988) Intragenic cis-actingart gene-responsive sequences of the human immunodeficiency virus. Proc Natl Acad Sci USA 85: 2071–2075

    Google Scholar 

  59. Sakai H, Shibata R, Sakuragi J, Kiyomasu T, Kawamura M, Hayami M, Ishimoto A, Adachi A (1991) Compatibility ofrev gene activity in the four groups of primate lentiviruses. Virology 184: 513–520

    Google Scholar 

  60. Saltarelli MJ, Schoborg R, Gdovin SL, Clements JE (1993) The CAEVtat genetrans-activates the viral LTR and is necessary for efficient viral replication. Virology 197: 35–44

    Google Scholar 

  61. Saltarelli M, Querat G, Konings DAM, Vigne R, Clements JE (1990) Nucleotide sequence and transcriptional analysis of molecular clones of CAEV which generate infectious virus. Virology 179: 347–364

    Google Scholar 

  62. Selby MJ, Bain ES, Luciw PA, Peterlin BM (1989) Structure, sequence, and position of the stem-loop intar determine transcriptional elongation bytat through the HIV-1 long terminal repeat. Genes Dev 3: 547–558

    Google Scholar 

  63. Sherman L, Gazit A, Yaniv A, Kawakami T, Dahlberg JE, Tronick SR (1988) Localization of sequences responsible fortrans-activation of the equine infectious anemia virus long terminal repeat. J Virol 62: 120–126

    Google Scholar 

  64. Sherman L, Yaniv A, Lichtman-Pleban H, Tronick SR, Gazit A (1989) Analysis of regulatory elements of the equine infectious anemia virus and caprine arthritis-encephalitis virus long terminal repeats. J Virol 63: 4925–4931

    Google Scholar 

  65. Shibata R, Miura T, Hayami M, Ogawa K, Sakai H, Kiyomasu T, Ishimoto A, Adachi A (1990) Mutational analysis of the human immunodeficiency virus type 2 (HIV-2) genome in relation to HIV-1 and simian immunodeficiency virus SIVAGM. J Virol 64: 742–747

    Google Scholar 

  66. Shibata R, Miura T, Hayami M, Sakai H, Ogawa K, Kiyomasu T, Ishimoto A, Adachi A (1990) Construction and characterization of an infectious DNA clone and of mutants of simian immunodeficiency virus isolated from the African green monkey. J Virol 64: 307–312

    Google Scholar 

  67. Siebelink KHJ, Chu I, Rimmelzwaan GF, Weijer K, Osterhaus ADME, Bosch ML (1992) Isolation and partial characterization of infectious molecular clones of feline immunodeficiency virus obtained directly from bone marrow DNA of a naturally infected cat. J Virol 66: 1091–1097

    Google Scholar 

  68. Siekevitz M, Josephs SF, Dukovich M, Peffer N, Wong-Staal F, Greene WC (1987) Activation of the HIV-1 LTR by T cell mitogens and thetrans-activator protein of HTLV-I. Science 238: 1575–1578

    Google Scholar 

  69. Sodora DL, Shpaer EG, Kitchell B, Dow SW, Hoover EA, Mullins JI (1993) Diversity and evolution of FIVenv genes: identification of three subgroups. In: Proc. International Symposium on Feline Retrovirus Research October 1993, North Carolina, p 26

  70. Sodroski J, Patarca R, Rosen C, Wong-Staal F, Haseltine W (1985) Location of thetrans-activating region on the genome of human T-cell lymphotropic virus type III. Science 229: 74–77

    Google Scholar 

  71. Sparger EE, Shacklett BL, Renshaw-Gegg L, Barry PA, Pedersen NC, Elder JH, Luciw PA (1992) Regulation of gene expression directed by the long terminal repeat of the feline immunodeficiency virus. Virology 187: 165–177

    Google Scholar 

  72. Steinman R, Dombrowski J, O'Connor T, Montelaro RC, Tonelli Q, Lawrence K, Seymour C, Goodness J, Pedersen NC, Andersen PR (1990) Biochemical and immunological characterization of the major structural proteins of feline immunodeficiency virus. J Gen Virol 71: 701–706

    Google Scholar 

  73. Strebel K, Daugherty D, Clouse K, Cohen D, Folks T, Martin MA (1987) The HIV ‘A’ (sor) gene product is essential for virus infectivity. Nature 328: 728–730

    Google Scholar 

  74. Strebel K, Klimkait T, Martin MA (1988) A novel gene of HIV-1, vpu, and its 16-kilodalton product. Science 241: 1221–1223

    Google Scholar 

  75. Talbott RL, Sparger EE, Lovelace KM, Fitch WM, Pedersen NC, Luciw PA, Elder JH (1989) Nucleotide sequence and genomic organization of feline immunodeficiency virus. Proc Natl Acad Sci USA 86: 5743–5747

    Google Scholar 

  76. Terwilliger E, Burghoff R, Sia R, Sodroski J, Haseltine W, Rosen C (1988) Theart gene product of human immunodeficiency virus is required for replication. J Virol 62: 655–658

    Google Scholar 

  77. Threadgill DS, Steagall WK, Flaherty MT, Fuller FJ, Perry ST, Rushlow KE, Le Grice SFJ, Payne SL (1993) Characterization of equine infectious anemia virus dUTPase: growth properties of a dUTPase-deficient mutant. J Virol 67: 2592–2600

    Google Scholar 

  78. Tiley LS, Cullen BR (1992) Structural and functional analysis of the visna virus Rev-response element. J Virol 66: 3609–3615

    Google Scholar 

  79. Tomonaga K, Miyazawa T, Sakuragi J, Mori T, Adachi A, Mikami T (1993) The feline immunodeficiency virus ORF-A gene facilitates efficient viral replication in established T cell lines and peripheral blood lymphocytes. J Virol 67: 5889–5895

    Google Scholar 

  80. Tomonaga K, Norimine J, Shin Y-S, Fukasawa M, Miyazawa T, Adachi A, Toyosaki T, Kawaguchi Y, Kai C, Mikami T (1992) Identification of a feline immunodeficiency virus gene which is essential for cell-free virus infectivity. J Virol 66: 6181–6185

    Google Scholar 

  81. Tomonaga K, Shin Y-S, Fukasawa M, Miyazawa T, Adachi A, Mikami T (1993) Feline immunodeficiency virus gene expression: analysis of the RNA splicing pattern and the monocistronicrev mRNA. J Gen Virol 74: 2409–2417

    Google Scholar 

  82. Wagaman PC, Hasselkus-Light CS, Henson M, Lerner DL, Phillips TR, Elder JH (1993) Molecular cloning and characterization of deoxyuridine triphosphatase from feline immunodeficiency virus (FIV). Virology 196: 451–457

    Google Scholar 

  83. Wu FK, Garcia JA, Harrich D, Gaynor RB (1988) Purification of the human immuno-deficiency virus type 1 enhancer and TAR binding proteins EBP-1 and UBP-1. EMBO J 7: 2117–2129

    Google Scholar 

  84. Zagury JF, Franchini G, Reitz M, Collalti E, Stracich B, Hall L, Fargnoli K, Jagodzinski L, Guo H-G, Laure F, Arya SK, Josephs S, Zagury D, Wong-Staal F, Gallo RC (1988) Genetic variability between isolates of human immunodeficiency virus (HIV) type 2 is comparable to the variability among HIV type 1. Proc Natl Acad Sci USA 85: 5941–5945

    Google Scholar 

  85. Zeichner SL, Kim JYH, Alwine JC (1991) Linker-scanning mutational analysis of the transcriptional activity of HIV-1 LTR. J Virol 65: 2436–2444

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miyazawa, T., Tomonaga, K., Kawaguchi, Y. et al. The genome of feline immunodeficiency virus. Archives of Virology 134, 221–234 (1994). https://doi.org/10.1007/BF01310563

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01310563

Keywords

Navigation