Skip to main content
Log in

The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view

  • Review
  • Published:
Histochemistry and Cell Biology Aims and scope Submit manuscript

Abstract

The NADPH oxidase complex catalyzes the formation of superoxide (O2 ) in phagocytic leukocytes. This paper reviews recent advances in our understanding of this enzyme system. Recent studies have defined conditions for reconstitution of this enzymatic activity with purified proteins in a cell-free system. The role of the individual proteins that make up the active complex, their regulation and the effects of mutations in these proteins are discussed. While these studies represent major achievements, it is clear from cytochemical investigations that additional levels of complexity exist in the modulation of the NADPH oxidase complex in vivo. A major role for cytochemical analysis in understanding the cell biological aspects of the generation of reactive oxygen species is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Abo A, Pick E, Hall A, Totty N, Teahan CG, Segal AW (1991) Activation of the NADPH oxidase involves the small GTP-binding protein p21-rac1. Nature 353:668–670

    PubMed  Google Scholar 

  • Abo A, Boyhan A, West I, Thrasher AJ, Segal AW (1992) Reconstitution of neutrophil NADPH oxidase activity in the cell free system by four components: p67-phox, p47-phox, p21rac 1, and cytochromeb-245. J Biol Chem 267:16767–16770

    PubMed  Google Scholar 

  • Abo A, Webb MR, Grogan A, Segal AW (1994) Activation of NADPH oxidase involves the dissociation of p21rac from its inhibitory GDP/GTP exchange protein (rhoGDI) followed by its translocation to the plasma membrane. Biochem J 298:585–591

    PubMed  Google Scholar 

  • Allen RC, Loose LD (1976) Phagocytic activation of a liminol-dependent chemiluminescence in rabbit alveolar and peritoneal macrophages. Biochem Biophys Res Commun 69:245–252

    PubMed  Google Scholar 

  • Allen RC, Stjernholm RL, Steele RH (1972) Evidence for the generation of an electronic excitation state(s) in human polymorphonuclear leukocytes and its participation in bactericidal activity. Biochem Biophys Res Commun 47:679–684

    PubMed  Google Scholar 

  • Angermüller S, Fahimi D (1988) Light microscopic visualization of reaction product of cerium used for localization of peroxisomal oxidases. J Histochem Cytochem 36:23–28

    PubMed  Google Scholar 

  • Auclair C, Voisin E (1985) Nitroblue tetrazolium reduction. In: Greenwald RA (ed) Handbook of methods for oxygen radical research. CRC Press, Boca Raton, pp 123–132

    Google Scholar 

  • Babbs CF, Cregor MD, Badylak SF (1992) Histochemical demonstration of endothelial superoxide and hydrogen peroxide generation in ischaemic and reoxygenated tissues. Cardiovas Res 26:593–602

    Google Scholar 

  • Babior BM (1978) Oxygen-dependent microbial killing by phagocytes. N Engl J Med 298:659–668

    PubMed  Google Scholar 

  • Badwey JA, Karnovsky ML (1980) Active oxygen species and the functions of phagocytic leukocytes. Ann Rev Biochem 49:695–726

    PubMed  Google Scholar 

  • Badwey JA, Karnovsky ML (1986) Production of superoxide by phagocytic leukocytes: a paradigm for stimulus-response phenomena. Curr Top Cell Regul 28:183–208

    PubMed  Google Scholar 

  • Badwey JA, Robinson JM, Lazdins JK, Briggs RT, Karnovsky MJ, Karnovsky ML (1983) Comparative biochemical and cytochemical studies on superoxide and peroxide in mouse macrophages. J Cell Physiol 115:208–216

    PubMed  Google Scholar 

  • Badwey JA, Curnutte JT, Robinson JM, Berde CB, Karnovsky MJ, Karnovsky ML (1984) Effect of free fatty acids on the release of superoxide and on change of shape by human neutrophils. Reversibility by albumin. J Biol Chem 259:7870–7877

    PubMed  Google Scholar 

  • Badwey JA, Robinson JM, Karnovsky MJ, Karnovsky ML (1986) Reduction and excitation of oxygen by phagocytic leukocytes: biochemical and cytochemical techniques. In: Weir DM, Herzenberg LA, Blackwell C, Herzenberg LA (eds) Handbook of experimental immunology, vol II, 4th edn. Blackwell, Edinburgh, pp 50.1–50.16

    Google Scholar 

  • Badwey JA, Robinson JM, Horn W, Soberman RJ, Karnovsky M, Karnovsky ML (1988) Synergistic stimulation of neutrophils. Possible involvement of 5-hydroxy-6,8,11,14-eicosatetraenoate in superoxide release. J Biol Chem 263:2779–2786

    PubMed  Google Scholar 

  • Badwey JA, Horn W, Heyworth PG, Robinson JM, Karnovsky ML (1989a) Paradoxical effects of retinal in neutrophil stimulation. J Biol Chem 264:14947–14953

    PubMed  Google Scholar 

  • Badwey JA, Robinson JM, Heyworth PG, Curnutte JT (1989b) 1,2-Dioctanoyl-sn-glycerol can stimulate neutrophils by different mechanisms. Evidence for a pathway that does not involve phosphorylation of the 47-kDa protein. J Biol Chem 264:20676–20682

    PubMed  Google Scholar 

  • Baggiolini M, Boulay F, Badwey JA, Curnutte JT (1993) Activation of neutrophil leukocytes: chemoattractant receptors and respiratory burst. FASEB J 7:1004–1010

    PubMed  Google Scholar 

  • Beauchamp C, Fridovich I (1970) A mechanism for the production of ethylene from methional. The generation of the hydroxyl radical by xanthine oxidase. J Biol Chem 245:4641–4646

    PubMed  Google Scholar 

  • Beckman JS, Beckman TW, Chen J, Marshall PA, Freeman BS (1990) Apparent hydroxyl radical production by peroxynitrite: implications for endothelial injury from nitric oxide and superoxide. Proc Natl Acad USA 87:1620–1624

    Google Scholar 

  • Bengtsson T, Jaconi MEE, Gustafson M, Magnusson K-E, Theler J-M, Lew DP, Stendahl O (1993) Actin dynamics in human neutrophils during adhesion and phagocytosis is controlled by changes in intracellular free calcium. Eur J Cell Biol 62:49–58

    PubMed  Google Scholar 

  • Bokoch GM, Bohl BP, Chuang T-H (1994) Guanine nucleotide exchange regulates membrane translocation of Rac/Rho GTP-binding proteins. J Biol Chem 269:31674–31679

    PubMed  Google Scholar 

  • Borregaard N, Heiple JM, Simmons ER, Clark RA (1983) Subcellular localization of theb-cytochrome component of the human neutrophil microbicidal oxidase: translocation during activation. J Cell Biol 97:51–62

    Google Scholar 

  • Briggs RT, Drath DB, Karnovsky ML, Karnovsky MJ (1975a) Localization of NADH oxidase on the surface of human polymorphonuclear leukocytes by a new cytochemical method. J Cell Biol 67:566–586

    PubMed  Google Scholar 

  • Briggs RT, Karnovsky ML, Karnovsky MJ (1975b) Cytochemical demonstration of hydrogen peroxide in polymorphonuclear phagosomes. J Cell Biol 64:254–260

    PubMed  Google Scholar 

  • Briggs RT, Karnovsky ML, Karnovsky MJ (1977) Hydrogen peroxide production in chronic granulamatous disease: a cytochemical study of reduced pyridine nucleotide oxidases. J Clin Invest 59:1088–1098

    PubMed  Google Scholar 

  • Briggs RT, Robinson JM, Karnovsky ML, Karnovsky MJ (1986) Superoxide production by polymorphonuclear leukocytes. A cytochemical approach. Histochemistry 84:371–378

    PubMed  Google Scholar 

  • Bromberg Y, Pick E (1984) Unsaturated fatty acids stimulate NADPH-dependent superoxide production by cell-free system derived from macrophages. Cell Immunol 88:213–21

    PubMed  Google Scholar 

  • Bromberg Y, Shani E, Joseph G, Gorzalczany Y, Sperling O, Pick E (1994) The GDP-bound form of the small G protein Rac 1 p21 is a potent activator of the superoxide-forming NADPH-oxidase of macrophages. J Biol Chem 269:7055–7058

    PubMed  Google Scholar 

  • Burnham DN, Uhlinger DJ, Lambeth DJ (1990) Diradylglycerol synergizes with an anionic amphiphile to activate superoxide generation and phosphorylation of p47-phox in a cell-free system from human neutrophils. J Biol Chem 265:175550–175559

    Google Scholar 

  • Castagna M, Takai Y, Kaibuchi K, Sano K, Kikkawa U, Nishizuka Y (1982) Direct activation of calcium-activated, phospholipid-dependent protein kinase by tumor-promoting phorbol esters. J Biol Chem 257:7847–7851

    PubMed  Google Scholar 

  • Champelovier P, Laporte F, Verhoeven AJ, Hilarius P, Klein A d, Revol C, Seigneurin D, Kolodie L (1993) Absence of both subunits of cytochromeb 558 in the UM384 cell line relative to the inability to generate superoxide anions. Exp Hematol 21:885–892

    PubMed  Google Scholar 

  • Cheson BD, Christensen RL, Sperling R, Kohler BE, Babior BM (1976) The origin of the chemiluminescence of phagocytosing granulocytes. J Clin Invest 58:789–796

    PubMed  Google Scholar 

  • Chiba T, Kaneda M, Fujii H, Clark RA, Nauseef WM, Kakinuma K (1990) Two cytosolic components of the neutrophil NADPH oxidase, p47-phox and p67-phox, are not flavoproteins. Biochem Biophys Res Commun 173:376–381

    PubMed  Google Scholar 

  • Chuang T-H, Bohl BP, Bokoch GM (1993) Biologically active lipids are regulators of Rac.GDI complexation. J Biol Chem 268:26206–26211

    PubMed  Google Scholar 

  • Clark RA, Volpp BD, Leidal KG, Nauseef WM (1990) Two cytosolic components of the human neutrophil respiratory burst oxidase translocate to the plasma membrane during cell activation. J Clin Invest 85:714–21

    PubMed  Google Scholar 

  • Clarke S (1992) Protein isoprenylation and methylation at carboxy-terminal cysteine residues. Annu Rev Biochem 61:355–386

    PubMed  Google Scholar 

  • Cohen HJ, Chovaniec ME (1978) Superoxide generation by digitonin-stimulated guinea pig granulocytes: a basis for a continuous assay for monitoring superoxide production and for the study of the activation of the generating system. J Clin Invest 61:1081–1087

    PubMed  Google Scholar 

  • Corey EJ, Mehrotra MM, Khan AU (1987) Antiarthritic gold compounds effectively quench electronically excited singlet oxygen. Science 236:68–69

    PubMed  Google Scholar 

  • Cox JA, Jeng AY, Blumberg PM, Tauber AI (1987) Comparison of subcellular activation of the human neutrophil NADPH-oxidase by arachidonic acid, SDS, and phorbol myristate acetate. J Immunol 138:1884–1888

    PubMed  Google Scholar 

  • Cross AR, Yarchover JL, Curnutte JT (1994) The superoxide generating system of human neutrophils possesses a novel diaphorase activity. J Biol Chem 269:21448–21454

    PubMed  Google Scholar 

  • Curnutte JT (1985) Activation of human neutrophil NADPH-oxidase by arachidonic acid in a cell-free system. J Clin Invest 75:1740–1743

    PubMed  Google Scholar 

  • Curnutte JT, Babior BM, Karnovsky ML (1979) Fluoride-mediated activation of the respiratory burst in human neutrophils. A reversible process. J Clin Invest 63:637–647

    PubMed  Google Scholar 

  • Curnutte JT, Badwey JA, Robinson JM, Karnovsky MJ, Karnovsky ML (1984) Studies on the mechanism of superoxide release from human neutrophils stimulated with arachidonate. J Biol Chem 259:11851–11857

    PubMed  Google Scholar 

  • Curnutte JT, Erickson RW, Ding J, Badwey JA (1994) Reciprocal interactions between protein kinase C and components of the NADPH oxidase complex may regulate superoxide production by neutrophils stimulated with a phorbol ester. J Biol Chem 269:10813–10819

    PubMed  Google Scholar 

  • Davies EV, Hallett MB, Campbell AK (1991) Localized superoxide release by neutrophils can be provoked by a cytosolic calcium cloud. Immunology 73:228–234

    PubMed  Google Scholar 

  • Deitch JS, Smith KL, Swann JW, Turner JN (1990) Parameters affecting imaging of the horseradish-peroxidase-diaminobenzidine reaction product in the confocal scanning laser microscope. J Microsc 160:269–278

    Google Scholar 

  • Mendez I de, Garrett MC, Adams AG, Leto TL (1994) Role of p67-phox SH3 domains in assembly of the NADPH-oxidase system. J Biol Chem 269:16326–16332

    PubMed  Google Scholar 

  • Didsbury J, Weber RF, Bokoch GM, Evans T, Snyderman R (1989) rac, a novel ras-related family of proteins that are Botulinum toxin substrates. J Biol Chem 264:16378–16382

    PubMed  Google Scholar 

  • DiGregorio KA, Cilento EV, Lantz RC (1987) Measurement of superoxide release from single pulmonary alveolar macrophages. Am. J Physiol 252:C677-C683

    PubMed  Google Scholar 

  • DiGregorio KA, Cilento EV, Lantz RC (1991) Heterogeneity in superoxide production as measured by nitroblue tetrazolium reduction from individual PAM. Am. J Physiol 260:L464-L470

    PubMed  Google Scholar 

  • Dinauer MC, Curnutte JT, Rosen H, Orkin SH (1989) A missense mutation in the neutrophil cytochromeb heavy chain in cytochrome-positive X-linked chronic granulomatous disease. J Clin Invest 84:2012–2106

    PubMed  Google Scholar 

  • Dinauer MC, Pierce EA, Erickson RW, Muhlebach TJ, Messner H, Orkin S, Seger RA, Curnutte JT (1991) Point mutation in the cytoplasmic domain of the neutrophil p22-phox cytochromeb subunit is associated with a nonfunctional NADPH-oxidase and chronic granulomatous disease. Proc Natl Acad Sci USA 88:11231–11235

    PubMed  Google Scholar 

  • Ding J, Badwey JA (1992) Effects of antagonists of protein phosphatases on superoxide release by neutrophils. J Biol Chem 267:6442–6448

    PubMed  Google Scholar 

  • Ding J, Badwey JA (1993a) Neutrophils stimulated with a chemotactic peptide or a phorobol ester exhibit different alterations in a battery of protein kinases. J Biol Chem 268:5234–5240

    PubMed  Google Scholar 

  • Ding J, Badwey JA (1993b) Stimulation of neutrophils with a chemoattractant activates several novel protein kinases that can catalyze the phosphorylation of peptides derived from p47-phox and MARCKS. J Biol Chem 268:17326–17333

    PubMed  Google Scholar 

  • Ding J, Badwey JA (1994) Wortmannin and 1-butanol block activation of a novel family of protein kinases in neutrophils. FEBS Lett 348:149–152

    PubMed  Google Scholar 

  • Downward J (1992) Regulatory mechanisms for ras proteins. Bio-Essays 14:177–184

    Google Scholar 

  • Dusi S, Rossi F (1993) Activation of NADPH oxidase involves the phosphorylation and translocation of cytosolic p67-phox. Biochem J 296:367–371

    PubMed  Google Scholar 

  • El Benna J, Ruedi JM, Babior BM (1994a) Cytosolic guanine nucleotide-binding protein Rac 2 operates in vivo as a component of the neutrophil respiratory burst oxidase. J Biol Chem 269:6729–6734

    PubMed  Google Scholar 

  • El Benna J, Faust LP, Babior BM (1994b) The phosphorylation of the respiratory burst oxidase component p47-phox during neutrophil activation. J Biol Chem 269:23431–23436

    PubMed  Google Scholar 

  • Esumi K, Nishida M, Shaw D, Smith TW, Marsh JD (1991) NADH measurements in adult rat myocytes during simulated ischemia. Am J Physiol 260:H1743-H1752

    PubMed  Google Scholar 

  • Feng S, Chen JK, Yu H, Simon JA, Schreiber SL (1994) Two-binding orientations for peptides to the Src SH3 domain: developmental of a general model for SH3-ligand interactions. Science 266:1241–1247

    PubMed  Google Scholar 

  • Finan P, Shimizu Y, Gout I, Hsuan J, Truong O, Butcher C, Bennett P, Waterfield MD, Kellie S (1994) An SH3 domain and proline-rich sequence mediate an interaction between two components of the phagocyte NADPH oxidase complex. J Biol Chem 269:13752–13755

    PubMed  Google Scholar 

  • Francis JW, Boxer LA, Petty HR (1988) Optical microscopy of antibody-dependent phagocytosis and lysis of erythrocytes by living normal and chronic granulomatous disease neutrophils: a role of superoxide anions in extraand intra-cellular lysis. J Cell Physiol 135:1–12

    PubMed  Google Scholar 

  • Freeman JLR, Kreck ML, Uhlinger DJ, Lambeth DJ (1994) Raseffector-homologue region on Rac regulates protein associations in the neutrophil respiratory burst oxidase complex. Biochemistry 33:13431–13435

    PubMed  Google Scholar 

  • Gerard RW, Baldridge CW (1933) The extra respiration of phagocytosis. Am J Physiol 103:235–236

    Google Scholar 

  • Goldstein IM, Cerqueria M, Lind S, Kaplan HB (1977) Evidence that the superoxide-generating system of human leukocytes is associated with the cell surface. J Clin Invest 59:249–254

    PubMed  Google Scholar 

  • Gomez-Cambronero J, Huang C-K, Gomez-Cambronero TM, Waterman WH, Becker EL, Sha'afi RI (1992) Granulocyte-macrophage colony-stimulating factor-induced protein tyrosine phosphorylation of microtubule-associated protein kinase in human neutrophils. Proc Natl Acad Sci USA 89:7551–7555

    PubMed  Google Scholar 

  • Gonzalez FA, Raden DL, Davis RJ (1991) Identification of substrate recognition determinants for human ERK1 and ERK2 protein Kinases. J Biol Chem 266:22159–22163

    PubMed  Google Scholar 

  • Graham RC Jr, Karnovsky MJ (1966) The early stages of absorption of injected horseradish peroxidase in the proximal tubules of mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 14:291–302

    PubMed  Google Scholar 

  • Grinstein S, Furuya W (1992) Chemoattractant-induced tyrosine phosphorylation and activation of microtubule-associated protein kinase in human neutrophils. J Biol Chem 267:18122–18125

    PubMed  Google Scholar 

  • Grinstein S, Furuya W, Butler JR, Tseng J (1993) Receptor-mediated activation of multiple serine/threonine kinases in human leukocytes. J Biol Chem 268:20223–20231

    PubMed  Google Scholar 

  • Grisham MB, Jefferson MM, Melton DF, Thomas EL (1984) Chlorination of endogenous amines by isolated neutrophils. Ammonia dependent bactericidal cytotoxic and cytolytic activities of the chloramines. J Biol Chem 1984; 259:10404–10413

    PubMed  Google Scholar 

  • Halbhuber K-J, Gossrau R, Moller U, Hulstaert CE, Zimmerman N, Feuerstein H (1988) The cerium perhydroxide-diaminobenzidine (Ce-H2O2-DAB) procedure. New methods for light microscopic phosphatase histochemistry and immunocytochemistry. Histochemistry 90:289–297

    PubMed  Google Scholar 

  • Halbhuber K-J, Hulstaert CE, Feuerstein H, Zimmermann N (1994) Cerium as capturing agent in phosphatase and oxidase histochemistry. Theoretical background and applications. Prog Histochem Cytochem 28:1–120

    Google Scholar 

  • Harrison JE, Schultz J (1976) Studies on the chlorinating activity of myeloperoxidase. J Biol Chem 251:1371–1374

    PubMed  Google Scholar 

  • Hartfield PJ, Robinson JM (1990) Fluoride-mediated activation of the respiratory burst in electropermeabilized neutrophils. Biochim Biophys Acta 1054:176–180

    PubMed  Google Scholar 

  • Heyneman RA, Vercauteren RE (1984) Activation of a NADPH-oxidase from horse polymorphonuclear leukocytes in a cell-free system. J Leukocyte Biol 36:751–775

    PubMed  Google Scholar 

  • Heyworth PG, Badwey JA (1990a) Protein phosphorylation associated with the stimulation of neutrophils. Modulation of superoxide production by protein kinase C and calcium. J Bioenerg Biomembr 22:1–26

    PubMed  Google Scholar 

  • Heyworth PG, Badwey JA (1990b) Continuous phosphorylation of the 47 and the 49 kDa proteins occurs during superoxide production by neutrophils. Biochim Biophys Acta 1052:299–305

    PubMed  Google Scholar 

  • Heyworth PG, Shrimpton CF, Segal AW (1989a) Localization of the 47 kDa phosphoprotein involved in the respiratory burst NADPH oxidase of phagocytic cells. Biochem J 260:243–249

    PubMed  Google Scholar 

  • Heyworth PG, Karnovsky ML, Badwey JA (1989b) Protein phosphorylation associated with the synergistic stimulation of neutrophils. J Biol Chem 264:14935–14939

    PubMed  Google Scholar 

  • Heyworth PG, Curnutte JT, Nauseef WM, Volpp BD, Pearson DW, Rosen H, Clark RA (1991) Neutrophil NADPH oxidase assembly. Translocation of p47-phox and p67-phox requires interaction between p47-phox and cytochromeb 558. J Clin Invest 87:352–356

    PubMed  Google Scholar 

  • Heyworth PG, Kanus UG, Xu X, Uhlinger DJ, Conroy L, Bokoch GM, Curnutte JT (1993a) Requirement for posttranslational processing of Rac GTP-binding proteins for activation of human neutrophil NADPH oxidase. Mol Biol Cell 4:261–269

    PubMed  Google Scholar 

  • Heyworth PG, Kanus UG, Settleman J, Curnutte JT, Bokoch GM (1993b) Regulation of NADPH oxidase activity by Rac GTP-ase activating protein(s). Mol Biol Cell 4:1217–1223

    PubMed  Google Scholar 

  • Heyworth PG, Bohl BP, Bokoch GM, Curnutte JT (1994) Rac translocates independently of the neutrophil NADPH oxidase components p47-phox and p67-phox. J Biol Chem 269:30749–30752

    PubMed  Google Scholar 

  • Hidaka H, Inagaki M, Kawamoto S, Sasaki Y (1984) Isoquinolinesulfonamides, novel and potent inhibitors of cyclic nucleotide dependent protein kinases and protein kinase C. Biochemistry 23:5036–5041

    PubMed  Google Scholar 

  • Hurst JK, Loehr TM, Curnutte JT, Rosen H (1991) Resonance Raman and electron paramagnetic resonance structural investigations of neutrophil cytochromeb-558. J Biol Chem 266:1627–1634

    PubMed  Google Scholar 

  • Imajoh-Ohm S, Tokita K, Ochiai H, Nakamura M, Kanegasaki S (1992) Topology of cytochromeb 558 in neutrophil membrane analyzed by anti-peptide antibodies and proteolysis. J Biol Chem 267:180–184

    PubMed  Google Scholar 

  • Iyer GYN, Islam MF, Quastel JH (1961) Biochemical aspects of phagocytosis. Nature 192:535–541

    Google Scholar 

  • Karnovsky ML (1962) Metabolic basis of phagocytic activity. Physiol Rev 42:1422–1432

    Google Scholar 

  • Karnovsky MJ (1994) Cytochemistry and reactive oxygen species: a retrospective. Histochemistry 102:15–27

    PubMed  Google Scholar 

  • Kennelly PJ, Krebs EG (1991) Consensus sequences as substrate specificity determinants for protein kinases and protein phosphatases. J Biol Chem 266:15555–15558

    PubMed  Google Scholar 

  • Khan AU, Kasha M (1994) Singlet molecular oxygen in the Haber-Weiss reaction. Proc Natl Acad Sci USA 91:13265–12367

    Google Scholar 

  • Klebanoff SJ (1968) Myeloperoxidase-halide-hydrogen peroxide antibacterial system. J Bacteriol 95:2131–2138

    PubMed  Google Scholar 

  • Kleinberg ME, Mital D, Rotrosen D, Malech HL (1992) Characterization of a phagocyte cytochromeb 558 91-kilodalton subunit functional domain: identification of peptide sequence and amino acids essential for activity. Biochemistry 31:2686–2690

    PubMed  Google Scholar 

  • Knaus UG, Heyworth PG, Evans T, Curnutte JT, Bokoch GM (1991) Regulation of phagocyte oxygen radical production by the GTP-binding protein Rac 2. Science 254:1512–1515

    PubMed  Google Scholar 

  • Kobayashi T, Robinson JM (1991) A novel intracellular compartment with unusual secretory properties in human neutrophils. J Cell Biol 113:743–756

    PubMed  Google Scholar 

  • Kobayashi T, Seguchi H (1994) Localization of NADPH oxidase in human polymorphonuclear leukocytes. J Histochem Cytochem 42:983

    Google Scholar 

  • Kontos CD, Wei EP, Williams JI, Kontos HA, Povlishock JT (1992) Cytochemical detection of superoxide in cerebral inflammation and ischemia in vivo. Am J Physiol 263:H1234-H1242

    PubMed  Google Scholar 

  • Koshkin V, Pick E (1993) Generation of superoxide by purified and relipidated cytochrome b559 in the absence of cytosolic factors. FEBS Lett 327:57–62

    PubMed  Google Scholar 

  • Koshkin V, Pick E (1994) Superoxide production by cytochrome b559. Mechanism of cytosol-independent activation. FEBS Lett 338:285–289

    PubMed  Google Scholar 

  • Kreck ML, Uhlinger DJ, Tyagi SR, Inge KL, Lambeth JD (1994) Participation of the small molecular weight GTP-binding protein Rac 1 in cell-free activation and assembly of the respiratory oxidase. J Biol Chem 269:4161–4168

    PubMed  Google Scholar 

  • Kurose I, Suematsu M, Miura S, Fukumura D, Sekizuka E, Nagata H, Oshio C, Tsuchiya M (1993) Oxyradical generation from leukocytes during endotoxin-induced microcirculatory disturbance in rat mesentery-attenuating effect of cetraxate. Tox Appl Pharmacol 120:37–44

    Google Scholar 

  • Lehmeyer JE, Snyderman R, Johnston RB (1979) Stimulation of neutrophil oxidative metabolism by chemotactic peptides: influence of calcium ion concentration and cytochalasin B and comparison to stimulation with phorbol myristate acetate. Blood 54:35–45

    PubMed  Google Scholar 

  • Leto TL, Lomax KL, Volpp BD, Nunoi H, Sechler JMG, Nauseef WM, Clark RA, Gallin JI, Malech HL (1990) Cloning of a 67-kD neutrophil oxidase factor with similarity to a noncatalytic region of p60c-src. Science 248:727–730

    PubMed  Google Scholar 

  • Leto TL, Adams AG, DeMendez I (1994) Assembly of the phagocyte NADPH oxidase: binding of Src homology 3 domains to proline-rich targets. Proc Natl Acad Sci USA 91:10650–10654

    PubMed  Google Scholar 

  • Liang B, Petty HR (1992) Imaging neutrophil activation: analysis of the translocation and utilization of NAD(P)H-associated autofluorescence during antibody-dependent target oxidation. J Cell Physiol 152:145–156

    PubMed  Google Scholar 

  • Lim WA, Richards FM, Fox RO (1994) Structural determinants of peptide-binding orientation and of sequence specificity in SH3 domains. Nature 372:375–378

    PubMed  Google Scholar 

  • Litwin JA (1982) Transition metal-catalyzed oxidation of 3,3′-diaminobenzidine [DAB] in a model system. Acta Histochem 71:111–117

    PubMed  Google Scholar 

  • Lomax KJ, Leto TL, Nunoi H, Gallin JI, Malech HL (1989) Recombinant 47-kilodalton cytosol factor restores NADPH oxidase in chronic granulomatous disease. Science 245:409–412. Corr Sci 246:987

    PubMed  Google Scholar 

  • Lu DJ, Takai A, Leto TL, Grinstein S (1992) Modulation of neutrophil activation by okadaic acid, a protein phosphatase inhibitor. Am J Physiol 262:C39-C49

    PubMed  Google Scholar 

  • Luna EJ, Hitt AL (1992) Cytoskeleton-plasma membrane interactions. Science 258:955–964

    PubMed  Google Scholar 

  • Maly F-E, Quilliam LA, Dorseuil O, Der CJ, Bokoch GM (1994) Activated or dorminant mutants of Rap1A decrease the oxidative burst of Epstein-Barr virus-transformed human B lymphocytes. J Bio Chem 269:18743–18746

    Google Scholar 

  • McPhail LC, Shirley PS, Clayton CC, Snyderman R (1985) Activation of the respiratory burst enzyme from human neutrophils in a cell-free system. J Clin Invest 75:1735–1740

    PubMed  Google Scholar 

  • Mendez I de, Garrett MC, Adams AG, Leto TL (1994) Role of p67-phox SH3 domains in assembly of the NADPH-oxidase system. J Biol Chem 269:16326–16332

    PubMed  Google Scholar 

  • Milburn MV, Tong L, DeVos AM, Brunger A, Yamaizumi Z, Nishimura S, Kim S-H (1990) Molecular switch for signal transduction: structural differences between active and inactive forms of protooncogenic ras proteins. Science 247:939–945

    PubMed  Google Scholar 

  • Mizuno T, Kaibuchi K, Ando S, Musha T, Hiraoka K, Takaishi K, Asada M, Nunoi H, Matsuda I, Takai Y (1992) Regulation of the superoxide generating NADPH oxidase by a small GTP-binding protein and its stimulatory and inhibitory GDP/GTP exchange proteins. J Biol Chem 267:10215–10218

    PubMed  Google Scholar 

  • Moriguchi K, Hirai K-I (1986) Cytochemistry of plasma membranes activated by phorbol myristate acetate and calcium ionophore in the alveolar and peritoneal macrophages of guinea pigs. Acta Histochem Cytochem 19:465–472

    Google Scholar 

  • Musacchio A, Noble M, Pauptit R, Wierenga R, Saraste M (1992) Crystal structure of a Srchomology 3 (SH3) domain. Nature 359:851–855

    PubMed  Google Scholar 

  • Nakanishi A, Imajoh-Ohmi S, Fujinawa T, Kikuchi H, Kanegasaki S (1992) Direct evidence for interaction between COOH-terminal regions of cytochrmeb 558 subunits and cytosolic 47-kDa protein during activation of an O2 -generating system in netrophils. J Biol Chem 267:19072–1974

    PubMed  Google Scholar 

  • Nathan CF, Root RK (1977) Hydrogen peroxide release from mouse peritoneal macrophages. Dependence on sequential activation and triggering. J Exp Med 146:1648–1662

    PubMed  Google Scholar 

  • Nathan DG, Bachner, RL, Weaver DK (1969) Failure of nitroblue tetrazolium reduction in the phagocytic vacuoles of leukocytes in chronic granulomatous disease. J Clin Invest 48:1895–1904

    PubMed  Google Scholar 

  • Nauseef WM, Volpp BD, McCormick S, Leidal KG, Clark RA (1991) Assembly of the neutrophil respiratory burst oxidase. Protein kinase C promotes cytoskeletal and membrane association of cytosolic oxidase components. J Biol Chem 266:5911–5917

    PubMed  Google Scholar 

  • Nauseef WM, McCormick S, Renee J, Leidal KG, Clark RA (1993) Functional domain in an arginine-rich carboxyl-terminal region of p47-phox. J Biol Chem 268:23646–23651

    PubMed  Google Scholar 

  • Oez S, Birkmann, Kalden JR (1993) Clonal growth of functionally normal and deficient neutrophils from the bone marrow of a patient with variant chronic granulomatous disease. Ann Hematol 66:21–25

    PubMed  Google Scholar 

  • Okada T, Kobayashi T, Hakoi K, Seguchi H (1987) A simple method for the light microscopical visualization of phosphohydrolase activity in materials processed for cerium-based ultracytochemistry. Acta Histochem Cytochem 20:105–110

    Google Scholar 

  • Okamura N, Curnutte JT, Roberts RL, Babior BM (1986) Relationship of protein phosphorylation to the activation of the respiratory burst in human neutrophils. Defects in the phosphorylation of a group of closely related 48-kDa proteins in two forms of chronic granulomatous disease. J Biol Chem 263:6777–6782

    Google Scholar 

  • Parkos CA, Allen RA, Cochrane CG, Jesaitis AJ (1987) Purified cytochromeb from human granulocyte plasma membrane is comprised of two polypeptides with relative molecular weights of 91,000 and 22,000. J Clin Invest 80:732–742

    PubMed  Google Scholar 

  • Parkos CA, Dinauer MC, Walker LE, Allen RA, Jesaitis AJ, Orkin SH (1988) Primary structure and unique expression of the 22-kilodalton light chain of human neutrophil cytochromeb. Proc Natl Acad Sci USA 85:3319–3323

    PubMed  Google Scholar 

  • Pawson T, Schlessinger J (1993) SH2 and SH3 domains. Curr Biol 3:434–442

    PubMed  Google Scholar 

  • Perry DK, Hand WL, Edmondson DE, Lambeth JD (1992) Role of phospholipase D-derived diradylglycerol in the activation of the human neutrophil respiratory burst oxidase. J Immunol 149:2749–2758

    PubMed  Google Scholar 

  • Petty HR, Francis JW (1985) Novel fluorescence method to visualize antibody-dependent hydrogen peroxide-“killing” of liposomes by phagocytes. Biophys J 47:837–840

    PubMed  Google Scholar 

  • Petty HR, Francis JW, Anderson CL (1989) Cell surface distribution of Fc receptors II and III on living human neutrophils before and during antibody dependent cellular cytotoxicity. J Cell Physiol 141:598–605

    PubMed  Google Scholar 

  • Petty HR, Liang B, Maher RJ (1992) Mapping the entry of reactive oxygen metabolites into target erythrocytes during neutrophil-mediated antibody-dependent cellular cytotoxicity. J Cell Physiol 150:447–450

    PubMed  Google Scholar 

  • Pruett SB, Loftis AY (1990) Characteristics of MTT as an indicator of viability and respiratory burst activity of human neutrophils. Int Arch Allergy Appl Immunol 92:189–192

    PubMed  Google Scholar 

  • Quinn MTC, Parkos CA, Jesaitis AJ (1989a) The lateral organization of components of the membrane skeleton and superoxide generation in the plasma membrane of stimulated human neutrophils. Biochim Biophys Acta 987:83–94

    PubMed  Google Scholar 

  • Quinn MT, Parkos CA, Walker L, Orkin SH, Dinauer MC, Jesaitis AJ (1989b) Association of a Ras-related protein with cytochromeb of human neutrophils. Nature 342:198–200

    PubMed  Google Scholar 

  • Quinn MT, Mullen ML, Jesaitis AJ (1992) Human neutrophil cytochromeb contains multiple hemes. Evidence for heme associated with both subunits. J Biol Chem 267:7303–7309

    PubMed  Google Scholar 

  • Quinn MT, Evans T, Priscu LR, Jesaitis AJ, Bokoch GM (1993) Translocation of Rac correlates with NADPH oxidase activation: evidence for equimolar translocations of oxidase components. J Biol Chem 268:20983–20987

    PubMed  Google Scholar 

  • Ramos CL, Pou S, Britigan BE, Cohen MS, Rosen GM (1992) Spin trapping evidence for myeloperoxidase-dependent hydroxyl radical formation by human neutrophils and monocytes. J Biol Chem 267:8307–8312

    PubMed  Google Scholar 

  • Ren R, Mayer BJ, Cicchetti P, Baltimore D (1993) Identification of a ten-amino acid proline-rich SH3 binding site. Science 259:1157–1161

    PubMed  Google Scholar 

  • Ridley AJ, Paterson HF, Johnston CL, Diekmann D, Hall A (1992) The small GTP-binding protein rac regulates growth factor-induced membrane ruffling. Cell 70:401–410

    PubMed  Google Scholar 

  • Robinson JM, Batten BE (1989) Detection of diaminobenzidine reactions using scanning laser confocal reflectance microscopy. J Histochem Cytochem 37:1761–1765

    PubMed  Google Scholar 

  • Robinson JM, Badwey JA, Karnovsky ML, Karnovsky MJ (1985) Release of superoxide and change in morphology by neutrophils in response to phorbol esters: antagonism by inhibitors of calcium binding proteins. J Cell Biol 101:1052–1058

    PubMed  Google Scholar 

  • Robinson JM, Badwey JA, Karnovsky MJ, Karnovsky ML (1987) Cell surface dynamics of neutrophils stimulated with phorbol esters or retinoids. J Cell Biol 105:417–426

    PubMed  Google Scholar 

  • Robinson JM, Batten BE (1990) Localization of cerium-based reaction products by scanning laser reflectance confocal microscopy. J Histochem Cytochem 38:315–318

    PubMed  Google Scholar 

  • Robinson JM, Heyworth PG, Badwey JA (1990) Utility of staurosporine in uncovering differences in the signal transduction pathways for superoxide production in neutrophils. Biochim Biophys Acta 1055:55–62

    PubMed  Google Scholar 

  • Robinson JM, Karnovsky, Stoward PJ, Lewis PR (1991) Oxidases. In: Stoward PJ, Pearse AGE (eds) Histochemistry, vol 3. Churchill Livingstone, Edinburgh, pp95–122

    Google Scholar 

  • Robinson JP, Carter WO (1993) Flow cytometric analysis of granulocytes. In: Bauer KD, Duque RE, Shankey TV (eds) Clinical flow cytometry. Principles and Applications. Williams & Wilkins, Baltimore, pp 405–433

    Google Scholar 

  • Root RK, Metcalf J, Oshino N, Chance B (1975) H2O2 release from human granulocytes during phagocytosis. I. Documentation, quantitation, and some regulating factors. J Clin Invest 55:945–955

    PubMed  Google Scholar 

  • Rosen H, Klebanoff S (1976) Chemiluminescence and superoxide production by myeloperoxidase-deficient leukocytes. J Clin Invest 58:50–60

    PubMed  Google Scholar 

  • Rossi F, Zatti M (1964) Changes in the metabolic pattern of polymorphonuclear leukocytes during phagocytosis. Br J Exp Pathol 45:548–559

    PubMed  Google Scholar 

  • Rotrosen D, Leto TL (1990) Phosphorylation of neutrophil 47-kDa cytosolic oxidase factor. Translocation to membrane is associated with distinct phosphorylation events. J Biol Chem 265:19910–19915

    PubMed  Google Scholar 

  • Rotrosen D, Kleinberg ME, Nunoi H, Leto T, Gallin JI, Malech HL (1990) Evidence of a functional domain of phagocyte oxidase cytochromeb 558. J Biol Chem 265:8745–8750

    PubMed  Google Scholar 

  • Rotrosen D, Yeung CL, Leto TL, Malech HL, Kwong CH (1992) Cytochromeb 558: the flavin-binding component of the phagocyte NADPH oxidase. Science 256:1459–1462

    PubMed  Google Scholar 

  • Royer-Pokora B, Kunkel LM, Monaco AP, Goff SC, Newburger PE, Baehner RL, Cole FS, Curnutte JT, Orkin SH (1986) Cloning the gene for an inherited human disorder-chronic granulomatous disease-on the basis of its chromosomal location. Nature 322:32–38

    PubMed  Google Scholar 

  • Saito H, Fukumura D, Kurose I, Suematsu M, Tada S, Kagawa T, Miura S, Morizane T, Tsuchiya M (1992) Visualization of oxidative processes at the cellular level during neutrophilmediated cytotoxicity against a human hepatoma cell line, HCC-M. Int J Cancer 51:124–129

    PubMed  Google Scholar 

  • Sawyer DW, Sullivan JA, Mandell GL (1985) Intracellular free calcium localization in neutrophils during phagocytosis. Science 230:663–666

    PubMed  Google Scholar 

  • Scherle P, Behrens T, Staudt LM (1993) Ly-GDI, a GDP-dissociation inhibitor of the RhoA GTP-binding protein, is expressed preferentially in lymphocytes. Proc Natl Acad Sci USA 90:7568–7582

    PubMed  Google Scholar 

  • Schwab JC, Leong DA, Mandell GL (1992) A wave of elevated intracellular free calcium spreads through human neutrophils during phagocytosis of zymosan J Leukocyte Biol 51: 437–443

    PubMed  Google Scholar 

  • Segal AW (1987) Absence of both cytochromeb-245 subunits from neutrophils in X-linked chronic granulomatous disease. Nature 326:88–91

    PubMed  Google Scholar 

  • Segal AW, Jones OTG (1978) Novel cytochrome b system in phagocytic vacuoles from human granulocytes. Nature 276: 515–517

    PubMed  Google Scholar 

  • Segal AW, West I, Wientjes F, Nugent JHA, Chavan AJ, Haley B, Garcia RC, Rosen H, Scrace G (1992) Cytochromeb-245 is a flavocytochrome containing FAD and the NADPH binding site of the microbicidal oxidase of phagocytes. Biochem J 284: 781–788

    PubMed  Google Scholar 

  • Smith RM, Curnutte JT (1991) Molecular basis of chronic granulomatous disease. Blood 77:673–686

    PubMed  Google Scholar 

  • Someya A, Nagaoka I, Yamashita T (1993) Purification of the 260 kDa cytosolic complex involved in the superoxide production of guinea pig neutrophils. FEBS Lett 330:215–218

    PubMed  Google Scholar 

  • Sondek J, Lambright DG, Noel JP, Hamm HE, Sigler PB (1994) GTPase mechanism of G-proteins from the 1.7 Å crystal structure of transduction α-GDP.AlF 4 . Nature 372:276–279

    PubMed  Google Scholar 

  • Steinbeck ML, Khan AU, Karnovksy MJ (1992) Intracellular singlet oxygen generation by phagocytosing neutrophils in response to particles coated with a chemical trap. J Biol Chem 267:13425–13433

    PubMed  Google Scholar 

  • Steinbeck MJ, Khan AU, Appel WH Jr, Karnovsky MJ (1993) The DAB-Mn++ cytochemical method revisited: validation of specificity for superoxide. J Histochem Cytochem 41:1659–1667

    PubMed  Google Scholar 

  • Stendahl O, Krause K-H, Krischer J, Jestrom, Theler J-M, Clark RA, Carpentier J-L, Lew DP (1994) Redistribution of intracellular Ca2+ stores during phagocytosis in human neutrophils. Science 265:1439–1441

    PubMed  Google Scholar 

  • Sternweis PC, Gilman AG (1982) Aluminum: a requirement for the activation of the regulatory component of adenylate cyclase by fluoride. Proc Natl Acad Sci USA 79:4888–4891

    PubMed  Google Scholar 

  • Suematsu M, Tsuchiya M (1991) Platelet-activating factor and granulocyte-mediated oxidative stress. Strategy for in vivo oxyradical visualization. Lipids 26:1362–1368

    PubMed  Google Scholar 

  • Suematsu M, Oshio C, Miura S, Tsuchiya M (1987) Real-time visualization of oxyradical burst from single neutrophil by using ultrasensitive video intensifier microscopy. Biochem Biophys Res Commun 149:1106–1110

    PubMed  Google Scholar 

  • Suematsu M, Kurose I, Asako H, Hiura S, Tsuchiya M (1989) In vivo visualization of oxyradical-dependent photoemission during endothelium-granulocyte interaction in microvascular beds treated with platelet-activating factor. J Biochem 106:355–360

    PubMed  Google Scholar 

  • Suematsu M, Schmid-Schonbein G, Chavez-Chavez RH, Yee TT, Tamatani T, Miyasaka M, Delano FA, Zweifach BW (1993) In vivo visualization of oxidative changes in microvessels during neutrophil activation. Am J Physiol 264:H881-H891

    PubMed  Google Scholar 

  • Sumimoto H, Sakamoto N, Nozaki M, Sakaki Y, Takeshige K, Minakami S (1992) Cytochromeb 558, a component of the phagocyte NADPH oxidase, is a flavoprotein. Biochem Biophys Res Commun 186:1368–1375

    PubMed  Google Scholar 

  • Sumimoto H, Kage Y, Nunoi H, Sasaki H, Nose T, Fukumaki Y, Ohno M, Minakami S, Takeshige K (1994) Role of Src homology 3 domains in assembly and activation of the phagocyte NADPH oxidase. Proc Natl Acad Sci USA 91:5345–5349

    PubMed  Google Scholar 

  • Suzuki H, Suematsu M, Miura S, Liu YY, Watanabe K, Miyasaka M, Tsurufuji S, Tsuchiya M (1994) Rat CINC/gro: a novel mediator for locomotion and secretagogue activation of neutrophils in vivo. J Leukoc Biol 55:652–657

    PubMed  Google Scholar 

  • Taylor WR, Jones OT, Segal AW (1993) A structural model for the nucleotide binding domains of the flavocytochromeb-245 b-chain. Protein Sci 2:1675–1685

    PubMed  Google Scholar 

  • Toth A, Tischler ME, Pal M, Koller A, Johnson PC (1992) A multipurpose instrument for quantitative intravital microscopy. J Appl Physiol 73:296–306

    PubMed  Google Scholar 

  • Tsuchiya M, Suematsu M, Suzuki H (1994) In vivo visualization of oxygen radical dependent photoemission. Methods Enzymol 233:128–140

    PubMed  Google Scholar 

  • Tyagi SR, Necklemann N, Uhlinger DJ, Burham DN, Lambeth DJ (1992) Cell-free translocation of recombinant p47-phox, a component of the neutrophil respiratory burst oxidase: effects of guanosine 5′-O-(3-thiotriphosphate), diacylglycerol, and an anionic amphiphile. Biochemistry 31:2765–2774

    PubMed  Google Scholar 

  • Van Noorden CJF, Frederiks WM (1993) Cerium methods for light and electron microscopical histochemistry. J Microsc 171: 3–16

    PubMed  Google Scholar 

  • Vissers MCM, Day WA, Winterbourn CC (1985) Neutrophils adherent to a nonphagocytosable surface (glomerular basement membrane) produce oxidants only at the site of attachment. Blood 66:161–166

    PubMed  Google Scholar 

  • Volpp BD, Nauseef WM, Clark RA (1988) Two cytosolic neutrophil oxidase components absent in autosomal chronic granulomatous disease. Science 242:1295–1297

    PubMed  Google Scholar 

  • Volpp BD, Nauseef WM, Donelson JE, Moser DR, Clark RA (1989) Cloning of the cDNA and functional expression of the 47-kilodalton cytosolic component of human neutrophil respiratory burst oxidase. Proc Natl Acad Sci USA 1989; 86:7195–9. Correction Proc Natl Acad Sci USA 1989;86:9563

    Google Scholar 

  • Warne PH, Viciana PR, Downward J (1993) Direct interaction of Ras and the amino-terminal region of Raf-1 in vitro. Nature 364:352–355

    PubMed  Google Scholar 

  • White JR, Naccache P, Sha'afi RI (1983) Stimulation by chemotactic factors of actin associated with the cytoskeleton in rabbit neutrophils. J Biol Chem 258:14041–14047

    PubMed  Google Scholar 

  • Wientjes FB, Hsuan JJ, Totty NF, Segal AW (1993) p40-Phox, a third cytosolic component of the activation complex of the NADPH oxidase to contain src homology 3 domains. Biochem J 296:557–561

    PubMed  Google Scholar 

  • Williams LT, Snyderman R, Pike MC, Lefkowitz RJ (1977) Specific receptor sites for chemotactic peptides on human polymorphonuclear leukocytes. Proc Natl Acad Sci USA 74:1204–1208

    PubMed  Google Scholar 

  • Wymann MP, von Tscharner V, Deranleu DA, Baggiolini M (1987) The onset of the respiratory burst in human neutrophils. J Biol Chem 262:12048–12053

    PubMed  Google Scholar 

  • Wymann MP, Kernen P, Bengtsson M, Andersson T, Baggiolini M, Deranleu DA (1990) Corresponding oscillations in neutrophil shape and filamentous actin content. J Biol Chem 265: 619–622

    PubMed  Google Scholar 

  • Xie Q, Cho HJ, Calaycay J, Mumford RA, Swiderek KM, Lee TD, Ding A, Trosco T, Nathan C (1992) Cloning and characterization of inducible nitric oxide synthetase from mouse macrophages. Science 256:225–228

    PubMed  Google Scholar 

  • Xu X, Barry DC, Settleman J, Schwartz MA, Bokoch GM (1994) Differing structural requirements for GTPase-activating protein responsiveness and NADPH oxidase activation by Rac. J Biol Chem 269:23569–23574

    PubMed  Google Scholar 

  • Yu H, Chen JK, Feng S, Dalgarno DC, Brauer AW, Schreiber SL (1994) Structural basis for the binding of proline-rich peptides to SH3 domains. Cell 76:933–945

    PubMed  Google Scholar 

  • Zimmerman N, Halbhuber K-J (1985) Light microscopical localization of enzymes by means of cerium based methods. I. Detection of acid phosphatase by a new cerium-lead technique. Acta Histochem 76:97–104

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Robinson, J.M., Badwey, J.A. The NADPH oxidase complex of phagocytic leukocytes: a biochemical and cytochemical view. Histochem Cell Biol 103, 163–180 (1995). https://doi.org/10.1007/BF01454021

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01454021

Keywords

Navigation