Skip to main content
Log in

Activation of humanα 1,-antitrypsin genes in rat hepatoma × human fibroblast hybrid cell lines is correlated with demethylation

  • Published:
Somatic Cell and Molecular Genetics

Abstract

Alpha-1-antitrypsin (AAT) is the major protease inhibitor in human serum and is primarily expressed in the liver. We have studied AAT expression infusion hybrids between a rat hepatoma line and either human fetal liver fibroblasts (series XXII) or human skin fibroblasts (series XIX). While the human AAT gene was always activated in series XXII hybrids when it was present, it was only rarely activated in series XIX hybrids. RFLP analysis revealed that both parental AAT alleles in series XIX hybrids were capable of being activated. Molecular analysis of the AAT gene in expressing and nonexpressing hybrids revealed that active AAT genes were hypomethylated, while inactive AAT genes were highly methylated. However, differences in methylation patterns were confined to the 5′ end of the gene, on both sides of the first exon. DNasel sensitivity revealed no hypersensitive sites close to active or inactive AAT genes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literature cited

  1. Wall, R., and Kuehl, M. (1983).Annu. Rev. Immunol. 1:393–422.

    PubMed  Google Scholar 

  2. Jaenisch, R., and Jähner, D. (1984).Biochim. Biophys. Acta 782:1–9.

    PubMed  Google Scholar 

  3. Razin, A., and Szyf, M. (1984).Biochim. Biophys. Acta 782:331–342.

    PubMed  Google Scholar 

  4. Doerfler, W. (1983).Annu. Rev. Biochem. 52:93–124.

    PubMed  Google Scholar 

  5. Ptashne, M. (1986).Nature 322:21.

    PubMed  Google Scholar 

  6. Sassone-Corsi, P., and Borrelli, E. (1986).Trends Genet. 2:215–219.

    Google Scholar 

  7. DiBerardino, M.A., Hoffner, N.J., and Etkin, L.D. (1984).Science 224:946–952.

    PubMed  Google Scholar 

  8. Killary, A.M., and Fournier, R.E.K. (1984).Cell 38:523–534.

    PubMed  Google Scholar 

  9. Strobl, J.S., Padmanabhan, R., Howard, B.H., Wehland, J., and Thompson, E.B. (1984).DNA 3:41–49.

    PubMed  Google Scholar 

  10. Sellern, C.H., Weiss, M.C., and Cassio, D. (1985).J. Mol. Biol. 181:363–371.

    PubMed  Google Scholar 

  11. Cori, F.C., Gluecksohn-Waelsch, S., Shaw, P.A., and Robinson, C. (1983).Proc. Natl. Acad. Sci. U.S.A. 80:6611–6614.

    PubMed  Google Scholar 

  12. Church, W.K., Papaconstantinou, J., Kwan, S-W., Poliard, A., Szpirer, C., and Szpirer, J. (1984).Somat. Cell Mol. Genet. 10:541–545.

    PubMed  Google Scholar 

  13. Purrello, M., Alhadeff, B., Whittington, E., Buckton, K.E., Daniel, A., Arnaud, P., Rocchi, M., Archidiacono, N., Filippi, G., and Siniscalco, M. (1987).Cytogenet. Cell Genet. 44:32–40.

    PubMed  Google Scholar 

  14. Leicht, M., Long, G.L., Chandra, T., Kurachi, K., Kidd, V., Mace, M., Davie, E.W., and Woo, S.L.C. (1982).Nature 297:655–659.

    PubMed  Google Scholar 

  15. Long, G.L., Chandra, T., Woo, S.L.C., Davie, E.W., and Kurachi, K. (1984).Biochemistry 23:4828–4837.

    PubMed  Google Scholar 

  16. Pearson, S.J., Tetri, P., George, D.L., and Francke, U. (1983).Somat. Cell Genet. 9:567–592.

    PubMed  Google Scholar 

  17. Chiu, C.P., and Blau, H.M. (1985).Cell 40:417–424.

    PubMed  Google Scholar 

  18. Weisbrod, S. (1982).Nature 297:289–295.

    PubMed  Google Scholar 

  19. Aden, D.P., Fogel, A., Plotkin, S., Damjanov, I., and Knowles, B.B. (1979).Nature 282:615–616.

    PubMed  Google Scholar 

  20. Knowles, B.B., Howe, C.C., and Aden, D.P. (1980).Science 209:497–499.

    PubMed  Google Scholar 

  21. Wyman, A.R., and White, R. (1980).Proc. Natl. Acad. Sci. U.S.A. 77:6754–6758.

    PubMed  Google Scholar 

  22. Ullrich, A., Berman, C.H., Dull, D.T., Gray, A., and Lee, J.M. (1984).EMBO J. 3:361–364.

    PubMed  Google Scholar 

  23. Maniatis, T., Fritsch, E.F., and Sambrook, J. (1982). Molecular Cloning: A Laboratory Manual (Cold Spring Harbor Laboratory, New York).

    Google Scholar 

  24. Baas, F., Bikker, H., van Ommen, G.J.B., and de Vijlder, J.J.M. (1984).Hum. Genet. 67:301–305.

    PubMed  Google Scholar 

  25. Feinberg, A., and Vogelstein, B. (1983).Anal. Biochem. 132:6–13.

    PubMed  Google Scholar 

  26. Ullrich, A., Shine, J., Chirgwin, J., Picter, R., Tischer, E., Rutter, W.J., and Goodman, H.M. (1979).Science 196:1313–1319.

    Google Scholar 

  27. O'Farrell, P.H., Kutter, E., and Nakanishi, M. (1980).Mol. Gen. Genet. 179:421–435.

    PubMed  Google Scholar 

  28. Southern, E. (1979).Methods Enzymol. 68:152–164.

    PubMed  Google Scholar 

  29. Barton, D.E., Yang-Feng, T.L., and Francke, U. (1986).Hum. Genet. 72:221–224.

    PubMed  Google Scholar 

  30. Fritton, H.P., Sippel, A.E., and Igo-Kemenes, T. (1983).Nucleic Acids Res. 11:3467–3485.

    PubMed  Google Scholar 

  31. de Martinville, B., Wyman, A.R., White, R., and Francke, U. (1982).Am. J. Hum. Genet. 34:216–226.

    PubMed  Google Scholar 

  32. Donlon, T.A., Litt, M., Newcom, R., and Magenis, R.E. (1983).Am. J. Hum. Genet. 35:1097–1106.

    PubMed  Google Scholar 

  33. Lu, L.-J.W., and Randerath, K. (1984).Mol. Pharmacol. 26:594–603.

    PubMed  Google Scholar 

  34. Pospelov, V.A., Klobeck, H.-G., and Zachau, H.G. (1984).Nucleic Acids Res. 12:7007–7201.

    PubMed  Google Scholar 

  35. Jongstra, J., Reudelhuber, T.L., Oudet, P., Benoist, C., Chae, C.B., Jeltsch, J.M., Mathis, D.J., and Chambon, P. (1984).Nature 307:708–714.

    PubMed  Google Scholar 

  36. Wu, C. (1984).Nature 309:229–234.

    PubMed  Google Scholar 

  37. Keshet, I., Lieman-Hurwitz, J., and Cedar, H. (1986).Cell 44:535–543.

    PubMed  Google Scholar 

  38. Kunnath, L., and Locker, J. (1985).Nucleic Acids Res. 13:115–129.

    PubMed  Google Scholar 

  39. Tuan, D., and London, I. (1984).Proc. Natl. Acad. Sci. U.S.A. 81:2718–2722.

    PubMed  Google Scholar 

  40. Pinkert, C.A., Ornitz, D.M., Brinster, R.L., and Palmiter, R.D. (1987).Genes Dev. 1:268–276.

    PubMed  Google Scholar 

  41. Church, G.M., Ephrussi, A., Gilbert, W., and Tonegawa, S. (1985).Anal. Biochem. 132:6–13.

    Google Scholar 

  42. Schmid, W., Müller, G., Schütz, G., and Gluecksohn-Waelsch, S. (1985).Proc. Natl. Acad. Sci. U.S.A. 82:2866–2869.

    PubMed  Google Scholar 

  43. Kelsey, D.G., Povey, S., Bygrave, A.E., and Lowell-Badge, R.H. (1987).Genes Dev. 1:161–171.

    PubMed  Google Scholar 

  44. Veres, G., Craigens, W.J., and Caskey, C.T. (1986).Biol. Chem. 261:7588–7591.

    Google Scholar 

  45. Minty, A., Blau, H., and Kedes, L. (1986).Mol. Cell Biol. 6:2137–2148.

    PubMed  Google Scholar 

  46. Ciliberto, G., Dente, L., and Cortese, R. (1985).Cell 41:531–540.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Barton, D.E., Francke, U. Activation of humanα 1,-antitrypsin genes in rat hepatoma × human fibroblast hybrid cell lines is correlated with demethylation. Somat Cell Mol Genet 13, 635–644 (1987). https://doi.org/10.1007/BF01534484

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01534484

Keywords

Navigation