Skip to main content
Log in

DNA-minisatellite mutations: Recent investigations concerning distribution and impact on parentage testing

  • Original Articles
  • Published:
International Journal of Legal Medicine Aims and scope Submit manuscript

Summary

At least 815 meioses were studied in theHinfI polymorphisms of DNA minisatellite loci D1S7, D2S44, D7S21, D7S22, and D12S11 in order to collect data on respective mutation rates. At locus D7S21 (probe MS31) a striking difference between the paternal and maternal mutation rate was observed (1.5% versus 0.2%). This study also describes, how to deal biostatistically with paternal mutations in parentage testing. Possible implications of mutations are illustrated by the description of 2 cases. Case 1 reports an “exclusion” of mother and father with probe MS1. Case 2 describes 2 paternal “exclusions” with probes MS31 and G3. The statistical likelihood for a paternal “exclusion” with 2 of the 5 probes is 0.13%. By omitting probe MS1, this frequency can be reduced to 0.02%. Nevertheless, the second case clearly shows, that informative blood group markers cannot be replaced by DNA polymorphisms.

Zusammenfassung

815-2004 Meiosen wurden in den HinfI-Polymorphismen der DNA-Loci D1S7, D2S44, D7S22 und D12S11 untersucht, um Daten über Mutationsfrequenzen zu gewinnen. Getrennt nach paternalen und maternalen Meiosen wurden die in Tabelle 1 dargestellten Mutationsraten beobachtet. Am DNA-Locus D7S21 (Sonde MS31) wurde ein signifikanter Unterschied zwischen paterneller und materneller Mutationsrate festgestellt (1,5% im Vergleich zu 0,2%). Die Arbeit beschreibt weiterhin, wie biostatistisch mit (paternellen) Mutationen im Vaterschaftsgutachten umgegangen werden muß. Die Bedeutung von Mutationen illustrieren 2 Falldarstellungen: Der 1. Fall beschreibt einen “Eltern-Kind-Ausschluß” mit Sonde MS1. Der 2. Fall berichtet von 2 paternellen “Ausschlußkonstellationen” mit den Sonden MS31 und G3.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alper CA, Klemperer MR, Rosen F (1969) Inherited deficiency of the third component of human complement (C'3). J Clin Invest 48: 553

    Google Scholar 

  2. Balazs I, Baird M, Clyne M, Meade E (1989) Human population genetic studies of five hypervariable DNA loci. Am J Hum Genet 44:182–190

    Google Scholar 

  3. Beckers TH, Logherr JJ van, Dunsford I (1955) A second example of the weak antigen A, occurring in the offspring of group 0 parents. Vox Sang 5:145

    Google Scholar 

  4. Bender K, Kasulke D, Mayerovà A, Hummel K, Weidinger S, Epplen JT, Wienker IF (1991) New mutation versus exclusion at the alpha- l-antitrypsin locus: a multifaceted approach in a problematical paternity case. Hum Hered 41:1–11

    Google Scholar 

  5. Bertrams J, Mauff G (1986) A silent allele of properdin factor B polymorphism (Bf*QO) in five family members. In: Brinkmann B, Henningsen K (eds) Advances in forensic haemogenetics 1. Springer, Berlin Heidelberg, pp 93–96

    Google Scholar 

  6. Brinkmann B, Hoppe HH, Sachs H-W, Weber W, Heide KG (1974) Über das Vorkommen des stummen Allels P in 10 deutschen Familien. Z Rechtsmed 75:25–32

    Google Scholar 

  7. Brinkmann B, Rand S, Wiegand P (1991) Population and family data of RFLP's using selected single- and multi-locus systems. Int J Leg Med 104:81–86

    Google Scholar 

  8. Bundesgesundheitsamt (1990) Neufassung der Richtlinien des BGA für die Erstellung von Blutgruppengutachten. Bundesgesundheitsblatt 33(6):264–268

    Google Scholar 

  9. Chown B, Lewis M, Kaita H (1965) The Duffy blood group system in Caucasians: evidence for a new allele. Am J Hum Genet 17:384

    Google Scholar 

  10. Cook PJL, Robson EB, Buckton KE, Jacobs PA, Polani PE (1974) Segregation of genetic markers in families with chromosome polymorphisms and structural rearrangements involving chromosome 1. Ann Hum Genet 37:261

    Google Scholar 

  11. Crome W (1935) Über Blutgruppenfragen: Mutter M, Kind N. Dtsch Z Ges Gerichtl Med 24:267

    Google Scholar 

  12. Dodd BE, Lincoln PJ, Insley J (1983) An apparent exclusion of maternity disclosed by tests for Rh and PGM1. 10. Internationaler Kongreß der Gesellschaft für Forensische Blutgruppenkunde, München, 11.–15.10., pp 131–134

  13. Dykes DD, Polesky HF (1988) Incidence of the PLG*Q0 allele in human populations. In: Mayr WR (ed) Advances in forensic haemogenetics 2. Springer, Berlin Heidelberg, pp 261–266

    Google Scholar 

  14. Eggermann T, Nöthen M, Erdmann J, Eiben B, Ahlert D, Propping P, Schwanitz G (1991) Parental origin of the extra chromosome in trisomy 18 determined using short sequence repeat DNA polymorphisms. Abstract 4. Tagung der Gesellschaft für Humangenetik, p 269

  15. Espinheira RM, Geada H, Mendonça M, Reys L (1988) “Silent” alleles in paternity testing. In: Mayr WR (ed) Advances in forensic haemogenetics 2. Springer, Berlin Heidelberg, pp 254–258

    Google Scholar 

  16. Fiedler H, Pettenkofer H (1968) Ein „neuer” Phänotyp im Isoenzymsystem der Phosphoglucomutasen des Menschen (PGM10). Blut 18:33

    Google Scholar 

  17. Fimmers R, Henke L, Henke J, Baur MP (1992) How to deal with mutations in DNA testing? In: Rittner C, Schneider PM (eds) Advances in forensic haemogenetics 4. Springer, Berlin Heidelberg, pp 285–287

    Google Scholar 

  18. Francis BJ, Hatcher DE (1966) MN blood types: The S-s-U+ and the Ml phenotypes. Vox Sang 11:213

    Google Scholar 

  19. Gianetti M, Stadler E, Rittner C, Lomas C, Tippett P (1983) A rare Rh haplotype producing Cw and c, and D and e in a German family. Vox Sang 44:319–321

    Google Scholar 

  20. Habibi B, Andre J, Fouillade MT, Lopez M, Salmon C (1976) An unusual Rh phenotype indicating heterogeneity of the Cw antigen. Vox Sang 31: 103–108

    Google Scholar 

  21. Haselhorst G, Lauer A (1930) Über eine Blutgruppenkombination Mutter AB und Kind 0. Zeitschrift für Konstitutionslehre 15:205

    Google Scholar 

  22. Heiken A, fnGiles CM (1967) Evidence of mutation within the Rhesus blood group system. Nature 213:699

    Google Scholar 

  23. Henke J, Baur MP, Hoffmann K, Henke L (1991) Zur Anwendung aussagekräftiger Single Locus DNA-Polymorphismen in komplizierten defizienten Abstammungsbegutachtungen. Ärztl Lab 37:175–179

    Google Scholar 

  24. Henke J, Schweitzer H, Cleef S, Epplen JT, Baur MP (1988) Aberrant MN bloodgroup inheritance in a German family: a ‘silent’ allele? Forensic Sci Int 39:279–285

    Google Scholar 

  25. Henke L, Cleef S, Zakrzewska M, Henke J (1991) Population genetic data determined for five different single locus minisatellite probes. In: Berg T, Jeffreys AJ, Wolff R, Dolf G (eds) DNA fingerprinting: approaches and applications. Birkhäuser Verlag, Basel

    Google Scholar 

  26. Henke L, Paas H, Hoffmann K, Henke J (1990) Zum Einsatz von DNA-Polymorphismen in der Abstammungsbegutachtung. Z Rechtsmed 103:235–248

    Google Scholar 

  27. Henningsen K (1958) A family study involving a new rare Rh chromosome (d-- or ---). VIIth Congress of the International Society of Blood Transfusion, Rome. Karger, Basel, p 667

    Google Scholar 

  28. Herbich J, Fisher RA, Hopkinson DA (1970) Atypical segregation of human red cell acid phosphatase phenotypes: evidence for a rare silent allele p°. Ann Hum Genet 34:145

    Google Scholar 

  29. Hoppe HH, Goedde HG, Agarwal DP, Benkmann HG, Hirth L, Janssen W (1978) A silent gene (C3-) producing partial deficiency of the third component of human complement. Hum Hered 28:141

    Google Scholar 

  30. Ishimori T, Hasekura H (1967) A Japanese with no detectable Rh blood group antigens due to silent Rh alleles or deleted chromosomes. Transfusion 7:84

    Google Scholar 

  31. Issitt PD (1985) Applied blood group serology, 3rd edn. Montgomery Scientific Publications, Miami

    Google Scholar 

  32. Jeffreys AJ, Royle NJ, Wilson V, Wong Z (1988) Spontaneous mutation rates to new length alleles at tandem repetitive hypervariable loci in human DNA. Nature 332:278–281

    Google Scholar 

  33. Jungwirth J (1967) Problematische Rhesusausschlüsse. Dtsch Z Ges Gerichtl Med 59:164

    Google Scholar 

  34. Kaita H, Lewis M, Chown B, Gard E (1959) A further example of the Kell blood group phenotype K-, k-, Kp(a-b-). Nature 183:1586

    Google Scholar 

  35. Krauland W, Smerling M (1970) Reinerbigkeitsausschlüsse SS/ss. Ärztl Lab 16:98

    Google Scholar 

  36. Levine P, Celano MJ, Falkowski F, Chambers J, Hunter OB, English CT (1964) A second example of ---/--- blood, or Rhnull. Nature 204:892

    Google Scholar 

  37. Lewis M, Kaita H, Chown B (1972) The Duffy blood group system in Caucasians. Vox Sang 23:523

    Google Scholar 

  38. Madsen G, Heists H (1968) A Korean family showing inheritance of A and B on the same chromosome. Vox Sang 14:211

    Google Scholar 

  39. Matsunaga E (1962) An inert allele Hp° at the Hp locus. Jpn J Hum Genet 7:133

    Google Scholar 

  40. Mauff G, Rittner C (1982) Joint report on C3, Bf and C6 reference typings. IV. Int Workshop for the Genetics of Complement, Boston

  41. Metaxas MN, Metaxas-Buehler M (1977) Genetik des MNSsBlutgruppensystems. 7. Internationaler Kongreß der Gesellschaft für Forensische Blutgruppenkunde, Hamburg, pp 103–118

  42. Polesky HF, Souhrada JM, Dykes DD (1983) The frequency of “null” genes calculated from trios in disputed parentage cases. 10. Internationaler Kongreß der Gesellschaft für Forensische Blutgruppenkunde, München, pp 161–166

  43. Prokop O, Rackwitz A (1968) Beweis für die Existenz eines neuen Gc-Gens, aufgedeckt durch eine anscheinend inkompatible Mutter-Kind-Paarung. Dtsch Z Ges Gerichtl Med 62:261

    Google Scholar 

  44. Puschel K, Krüger A, Sbder-Bräunlich R (1988) Further evidence of a silent Tf allele. In: Mayr WR (ed) Advances in forensic haemogenetics 2. Springer, Berlin Heidelberg, pp 259–260

    Google Scholar 

  45. Rasmuson M, Heiken A (1966) Frequency of occurrence of the human Rh complexes D(c)(e), d(c)(e), D--, and ---. Nature 212:1377–1379

    Google Scholar 

  46. Ritter H (1991) Die humangenetische Abstammungsbegutachtung. Familienrichterzeitung 6:646–649

    Google Scholar 

  47. Rittner C, Schneider PM, Rittner G (1992) Zum Beitrag des DNA-Gutachtens in Fällen mit verstorbenem Putativvater. Der Amtsvormund 65(2):105–114

    Google Scholar 

  48. Sachs HW, Reuter W, Tippett P, Gavin J (1978) A Rh gene complex producing both Cw and c antigen. Vox Sang 35:272–274

    Google Scholar 

  49. Schleyer F, Spielmann W, Oepen I (1973) Kombination von Rh Deletionstyp und stummem Fy-Gen. Beitr Gerichtl Med 30:389

    Google Scholar 

  50. Smerling M (1971) Su in der weißen Bevölkerung. Bericht über Familienuntersuchungen. Beitr gerichtl Med 28:237

    Google Scholar 

  51. Smerling M (1976) Zur Serologie und Genetik des DuffySystems. Z Rechtsmed 78:121–135

    Google Scholar 

  52. Smith JC, Anwar R, Riley J, Jenner D, Markham AF, Jeffreys AJ (1990) Highly polymorphic minisatellite sequences: allele frequencies and mutation rates for five locus specific probes in a Caucasian population. J Forensic Sci Soc 30:19–32

    Google Scholar 

  53. Sorgo G, Piso C (1972) Das System Duffy: Genfrequenzen und Familienuntersuchungen. Blut 24:89–93

    Google Scholar 

  54. Speiser P, Pausch V (1977) GPT° in drei Generationen. Ärztl Lab 23:487–490

    Google Scholar 

  55. Spielmann W, Schilling L, Teixidor D (1968) Genfrequenzen und Vererbung im Duffy-System. Hum Genet 6:200–206

    Google Scholar 

  56. Tippett P (1977) Some recent observations in the Rh, Lutheran and Kell blood group systems. 7. Internationaler Kongreß der Gesellschaft für Forensische Blutgruppenkunde, Hamburg, pp 89–102

  57. Trube-Becker E, Henke J (1981)Großmutter/Mutter/KindInkompatibilität aufgrund des Rhesus-Genkomplexes (C)D(e). Z Morphol Anthropol 72(2):205–212

    Google Scholar 

  58. Vogel F, Rathenberg R (1975) Spontaneous mutation in man. Adv Hum Genet 5:223–318

    Google Scholar 

  59. Weber W (1988) Nachweis des “stummen” Gens PGP° am Phosphoglycolat-Phosphatase-Locus. In: Mayr WR (ed) Advances in forensic haemogenetics 2. Springer, Berlin Heidelberg, pp 250–253

    Google Scholar 

  60. Weissmann J, Oepen I, Hilgermann R (1979) Ein seltener Phänotyp: GPT 0. Ärztl Lab 25:229–231

    Google Scholar 

  61. Weissmann J, Swart J, Pribilla O (1982) Das Duffy-System: Genfrequenzen und Familienuntersuchungen in SchleswigHolstein. Ärztl Lab 28:225–228

    Google Scholar 

  62. Wendt nGG, Kirchberg G, Rube M, Ritter H (1971) Problematischer Mutter-Kind-Ausschluß mit PGMI. Humangenetik 11:171

    Google Scholar 

  63. Wenk RE, Houtz TD, Brooks M, Bard K (1983) Unexpressed HLA haplotype and erroneous maternal exclusion. 10. Internationaler Kongreß der Gesellschaft für Forensische Blutgruppenkunde, München, pp 35–40

  64. Wetterling G (1988) Discrepancy between gene and protein products within the PGMI system shown by improved resolution on immobiline gels. In: Mayr WR (ed) Advances in forensic haemogenetics 2. Springer, Berlin Heidelberg, pp 97–101

    Google Scholar 

  65. Wolff RK, Nakamura Y, White R (1988) Molecular characterization of a spontaneously generated new allele at a VNTR locus: no exchange of flanking DNA sequence. Genomics 3:347–351

    Google Scholar 

  66. Yokoyama M, Mermod LE, Stegmaier A (1967) Further examples of Jk (a- b-) blood in Hawaii. Vox Sang 12:15

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Henkel, J., Fimmers, R., Baur, M.P. et al. DNA-minisatellite mutations: Recent investigations concerning distribution and impact on parentage testing. Int J Leg Med 105, 217–222 (1993). https://doi.org/10.1007/BF01642797

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01642797

Key words

Schlüsselwörter

Navigation