Skip to main content
Log in

Regulation of the d-glucose transport system in isolated fat cells

  • General and Review Articles
  • b. review articles
  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Summary

Recent technical advances have yielded considerable new biochemical insights into the hexose transport systems of both brown and white fat cells. In the present studies a novel filtration method was used to monitor initial rates of 3-O-(3H) methylglucose uptake in isolated white fat cells. Transport of 3-O-methylglucose, a non-metabolizable analogue of glucose, occurred by facilitated diffusion, was inhibited by glucose, phloridzin, cytochalasin B and dipyridamole, and was rapidly stimulated by insulin as well as lectins. Total 3-O-methylglucose uptake in white fat cells could be attributed to two kinetically distinct processes in addition to a certain degree of diffusion.

Two important new features of glucose transport in fat cells have been discovered. First, in both brown and white fat cells transport per se does not appear to be necessarily rate-limiting for further glucose metabolism. Thus vitamin K5, which markedly increases glucose oxidation by brown fat cells, did not affect the glucose transport system activity. Glucose utilization can apparently be significantly enhanced in fat cells by agents which either increase transport system activity or intracellular enzyme activity. Second, the transport system itself, whether in the basal state or after activation by insulin, lectins, or oxidants, is resistant to sulfhydryl reagents such as N-ethylmaleimide, while the increase in transport activity due to these agents is exquisitely sensitive to sulfhydryl blockage. N-ethylmaleimide blocks the stimulatory effect of insulin on transport whereas addition of insulin to fat cells prior to the reagent completely protects against this inhibitory effect. Further, N-ethylmaleimide prevents the elevated rates of transport system activity due to insulin (or other agents) from returning to basal levels once the cells are washed free of hormone. These data are consistent with the concept that activation of the transport system involves oxidation of key membrane sulfhydryls to the disulfide form, but alternative models are also possible. In any case, these findings provide a possible biochemical clue for future studies designed to identify the specific component(s) involved in the regulatory mechanism which modulates transport of glucose in isolated fat cells.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. M. Rodbell, J. Biol. Chem. 239, 375–380, 1964.

    PubMed  Google Scholar 

  2. J. N. Fain, M. P. Czech, and R. Saperstein, inMethods in Investigative and Diagnostic Endocrinology Volume 2APeptide Hormones, (S. A. Berson and R. S. Yalow, eds.) pp. 267–273 North-Holland Publishing Co., Amsterdam, 1973.

    Google Scholar 

  3. O. B. Crofford and A. E. Renold, J. Biol. Chem. 240, 14–21, 1965.

    PubMed  Google Scholar 

  4. M. P. Czech, J. C. Lawrence, Jr., and W. S. Lynn, J. Biol. Chem. 249, 5421–5427, 1974.

    PubMed  Google Scholar 

  5. M. P. Czech, J. C. Lawrence, Jr., and W. S. Lynn, Proc. Nat. Acad. Sci. U.S.A. 71, 4173–4177, 1974.

    Google Scholar 

  6. M. P. Czech, J. C. Lawrence, Jr., and W. S. Lynn, J. Biol. Chem. 249, 1001–1006, 1974.

    PubMed  Google Scholar 

  7. M. P. Czech and W. S. Lynn, Biochim. Biophys. Acta 297, 368–377, 1973.

    PubMed  Google Scholar 

  8. M. P. Czech, J. C. Lawrence, Jr., and W. S. Lynn, J. Biol. Chem. 249, 7499–7505.

  9. P. Cuatrecasas and G. P. E. Tell, Proc. Nat. Acad. Sci. U.S.A. 70, 485–489, 1973.

    Google Scholar 

  10. T. Kono and F. W. Barham, J. Biol. Chem. 246, 6204–6209, 1971.

    Google Scholar 

  11. M. Rodbell, J. Biol. Chem. 241, 130–139, 1966.

    PubMed  Google Scholar 

  12. J. W. Rosenthal and J. N. Fain, J. Biol. Chem. 246, 5888–5895, 1971.

    PubMed  Google Scholar 

  13. P. Cuatrecasas and G. Illiano, J. Biol. Chem. 246, 4938–4946, 1971.

    PubMed  Google Scholar 

  14. A. Angel and J. Farkas, inHormone and Metabolic Research Supplement 2,Adipose Tissue, Regulation and Metabolic Functions (B. Jeanrenaud and D. Hepp, eds.) pp. 152–161 Georg Thieme Verlag Stuttgart, Academic Press, New York, 1970.

    Google Scholar 

  15. O. B. Crofford, W. Stauffacher, B. Jeanrenaud, and A. E. Renold, Helv. Physiol. Pharmacol. Acta 24, 45–57, 1966.

    PubMed  Google Scholar 

  16. O. B. Crofford and A. E. Renold, J. Biol. Chem. 240, 3237–3244, 1965.

    PubMed  Google Scholar 

  17. O. B. Crofford, Amer. J. Physiol. 212, 217–220, 1967.

    PubMed  Google Scholar 

  18. J. Gliemann, K. Osterlind, J. Vinten, and S. Gammeltoft, Biochim. Biophys. Acta 286, 1–9, 1972.

    PubMed  Google Scholar 

  19. J. Gliemann, S. Gammeltoft, J. Vinten, and O. Andersen. Presented at the inauguration symposium of Diabetes-Forschungsinstitut an der Universität Düsseldorf, November 1974, in press.

  20. K.-J. Chang and P. Cuatrecasas, J. Biol. Chem. 249, 3170–3180, 1974.

    PubMed  Google Scholar 

  21. J. Gliemann, S. Gammeltoft, J. Vinten, in Contemporary Topics in the Study of Diabetes and Metabolic Endocrinology, (E. Shafrir, ed.) in press, 1975.

  22. J. Vinten, K. Osterlind and J. Gliemann, in preparation.

  23. J. N. Fain, N. Reed, and R. Saperstein, J. Biol. Chem. 242, 1887–1894, 1967.

    PubMed  Google Scholar 

  24. A. Munck, Biochim. Biophys. Acta 57, 318–326, 1962.

    PubMed  Google Scholar 

  25. J. N. Fain, R. O. Scow, and S. S. Chernick, J. Biol. Chem. 238, 54–58, 1963.

    Google Scholar 

  26. M. P. Czech and J. N. Fain, Biochim. Biophys. Acta 230, 185–193, 1971.

    PubMed  Google Scholar 

  27. M. P. Czech and J. N. Fain, Endocrinology 91, 518–522, 1972.

    PubMed  Google Scholar 

  28. J. N. Fain and M. P. Czech, inHandbook of Physiology, in press

  29. J. Gliemann, Diabetes 14, 643–649, 1965.

    PubMed  Google Scholar 

  30. M. C. Perry and C. N. Hales, Biochem. J. 115, 865–871, 1969.

    PubMed  Google Scholar 

  31. M. P. Czech, D. G. Lynn, and W. S. Lynn, J. Biol. Chem. 248, 3636–3641, 1973.

    PubMed  Google Scholar 

  32. H. E. Morgan, J. J. Henderson, D. M. Regen, and C. R. Park, J. Biol. Chem. 236, 253–261, 1961.

    PubMed  Google Scholar 

  33. H. E. Morgan, E. Cadenas, D. M. Regen, and C. R. Park, J. Biol. Chem. 236, 262–268, 1961.

    PubMed  Google Scholar 

  34. R. L. Post, H. E. Morgan, and C. R. Park, J. Biol. Chem. 236, 269–277, 1961.

    PubMed  Google Scholar 

  35. A. Kleinzeller and A. Kotyk, in Collog. Int. Cent. Nat. Rech. Sci. p. 372, 1965.

  36. R. F. Kletzien and J. F. Perdue, J. Biol. Chem. 249, 3366–3374, 1974.

    PubMed  Google Scholar 

  37. P. G. W. Plagemann and D. P. Richey, Biochim. Biophys. Acta 344, 263–305, 1974.

    PubMed  Google Scholar 

  38. L. H. Chen and R. D. Dallam, Arch. Biochem. Biophys. 111, 104–120, 1965.

    PubMed  Google Scholar 

  39. H. Nishibayashi-Yamashita and R. Sato, J. Biochem. (Tokyo) 67, 199–210, 1970.

    Google Scholar 

  40. E. D. Renner, P. G. W. Plagemann, and R. W. Bernlohr, J. Biol. Chem. 247, 5765–5776, 1972.

    PubMed  Google Scholar 

  41. M. P. Czech, manuscript in preparation.

  42. P. Nowell, Cancer Res. 20, 462–466, 1960.

    PubMed  Google Scholar 

  43. J. H. Robbins, Science 146, 1648–1654, 1964.

    PubMed  Google Scholar 

  44. J. H. Peters and P. Hansen, Eur. J. Biochem. 19, 509–513, 1971.

    PubMed  Google Scholar 

  45. J. W. Hadden, E. M. Hadden, M. K. Haddox, and N. D. Goldberg, Proc. Nat. Acad. Sci. U.S.A. 69, 3024–3027, 1972.

    Google Scholar 

  46. T. Kono, J. Biol. Chem. 244, 5777–5784, 1969.

    PubMed  Google Scholar 

  47. P. Cuatrecasas, J. Biol. Chem. 248, 3528–3534, 1973.

    PubMed  Google Scholar 

  48. P. Cuatrecasas, Biochemistry 12, 1312–1323, 1973.

    PubMed  Google Scholar 

  49. T. Kono and F. W. Barham, J. Biol. Chem. 246, 6210–6216, 1971.

    PubMed  Google Scholar 

  50. P. Cuatrecasas, Proc. Nat. Acad. Sci. U.S.A. 68, 1264–1268, 1971.

    Google Scholar 

  51. S. Gammeltoft and J. Gliemann, Biochim. Biophys. Acta 320, 16–32, 1973.

    PubMed  Google Scholar 

  52. M. P. Czech and W. S. Lynn, inMiami Winter Symposia Vol. 7Biology and Chemistry of Eucaryotic Cell Surfaces (E. Y. C. Lee and E. E. Smith, eds.) p. 360 Academic Press, New York, 1974.

    Google Scholar 

  53. M. P. Czech and W. S. Lynn, J. Biol. Chem. 248, 5081–5088, 1973.

    PubMed  Google Scholar 

  54. M P. Czech and W. S. Lynn, Biochemistry 12, 3597–3601.

  55. T. Minemura and O. B. Crofford, J. Biol. Chem. 244, 5181–5188, 1969.

    PubMed  Google Scholar 

  56. J. R. Carter, Jr. and D. B. Martin, Biochim. Biophys. Acta 177, 521–526, 1969.

    PubMed  Google Scholar 

  57. V. R. Lavis and R. H. Williams, J. Biol. Chem. 245, 23–31, 1970.

    PubMed  Google Scholar 

  58. J. Avruch and S. L. Pohl, inBiological Membranes Vol. 2 (D. Chapman and D. F. H. Wallach, eds.) pp. 185–219 Academic Press, New York 1973.

    Google Scholar 

  59. M. P. Czech and J. N. Fain, J. Biol. Chem. 247, 6218–6233, 1972.

    PubMed  Google Scholar 

  60. M. P. Czech, unpublished observations.

  61. E. Cadenas, H. Kaji, C. R. Park, and H. Rasmussen, J. Biol. Chem. 236, PC63-PC64, 1961.

    PubMed  Google Scholar 

  62. M. P. Czech, Fed. Proc. 34, 250 (Abstr.) 1975.

  63. H. Kacser and J. A. Burns, inSymposia of the Society for Experimental Biology. XXVII. Rate Control of Biological Processes. pp. 65–104 Cambridge University Press, London 1973.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Invited Article

Recipient of the Elliot P. Joslin Research and Development Award of the American Diabetes Association.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Czech, M.P. Regulation of the d-glucose transport system in isolated fat cells. Mol Cell Biochem 11, 51–63 (1976). https://doi.org/10.1007/BF01792833

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01792833

Keywords

Navigation