Skip to main content
Log in

Vasopressin alters the mechanism of apical Cl entry from Na+:Cl to Na+:K+:2Cl cotransport in mouse medullary thick ascending limb

  • Articles
  • Published:
The Journal of Membrane Biology Aims and scope Submit manuscript

Summary

Experiments were performed usingin vitro perfused medullary thick ascending limbs of Henle (MTAL) and in suspensions of MTAL tubules isolated from mouse kidney to evaluate the effects of arginine vasopressin (AVP) on the K+ dependence of the apical, furosemide-sensitive Na+:Cl cotransporter and on transport-related oxygen consumption (QO2). In isolated perfused MTAL segments, the rate of cell swelling induced by removing K+ from, and adding onemm ouabain to, the basolateral solution [ouabain(zero-K+)] provided an index to apical cotransporter activity and was used to evaluated the ionic requirements of the apical cotransporter in the presence and absence of AVP. In the absence of AVP cotransporter activity required Na+ and Cl, but not K+, while in the presence of AVP the apical cotransporter required all three ions.86Rb+ uptake into MTAL tubules in suspension was significant only after exposure of tubules to AVP. Moreover,22Na+ uptake was unaffected by extracellular K+ in the absence of AVP while after AVP exposure22Na+ uptake was strictly K+-dependent. The AVP-induced coupling of K+ to the Na+:Cl cotransporter resulted in a doubling in the rate of NaCl absorption without a parallel increase in the rate of cellular22Na+ uptake or transport-related oxygen consumption. These results indicate that arginine vasopressin alters the mode of a loop diuretic-sensitive transporter from Na+:Cl cotransport to Na+:K+:2Cl cotransport in the mouse MTAL with the latter providing a distinct metabolic advantage for sodium transport. A model for AVP action on NaCl absorption by the MTAL is presented and the physiological significance of the coupling of K+ to the apical Na+:Cl cotransporter in the MTAL and of the enhanced metabolic efficiency are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alvo, M., Calamia, J., Eveloff, J.L. 1985. Lack of potassium effect on Na−Cl cotransport in the medullary thick ascending limb.Am. J. Physiol. 249:F34-F39

    PubMed  Google Scholar 

  2. Amsler, K., Donahue, J.J., Slayman, C.W., Adelberg, E.A. 1985. Stimulation of bumetanide-sensitive K+ transport in Swiss 2T3 fibroblasts by serum and mitogenic hormones.J. Cell. Physiol. 123:257–263

    PubMed  Google Scholar 

  3. Brezis, M., Rosen, S., Silva P., Epstein, F.H. 1984. Renal ischemia: A new perspective.Kidney Int. 26:375–383

    PubMed  Google Scholar 

  4. Brock, T.A., Brugnara, C., Canessa, M., Gimbrone, M.A., Jr. 1986. Bradykinin and vasopressin stimulate Na+−K+−Cl cotransport in cultured endothelial cells.Am. J. Physiol. 250:C888-C895

    PubMed  Google Scholar 

  5. Eveloff, J., Calamia, J. 1986. Effect of hyperosmolality and phorbol esters on cation fluxes in medullary thick ascending limb cells (mTALH).Kidney Int. 29:395 (Abstr.)

    Google Scholar 

  6. Eveloff, J., Hasse, W., Kinne, R. 1980. Separation of renal medullary cells: Isolation of cells from the thick ascending limb of Henle's loop.J. Cell Biol 87:672–681

    PubMed  Google Scholar 

  7. Eveloff, J.L., Calamia, J. 1986. Effect of osmolarity on cation fluxes in medullary thick ascending limb cells.Am. J. Physiol. 250:F176-F180

    PubMed  Google Scholar 

  8. Eveloff, J.L., Warnock, D.G. 1987. Activation of ion transport systems during cell volume regulation.Am. J. Physiol. 252:F1-F10

    PubMed  Google Scholar 

  9. Feit, P.W., Hoffmann, E.K., Schiodt, M., Kristensen, P., Jessen, F., Dunham, P.B. 1988. Purification of proteins of the Na/Cl cotransporter from membranes of Ehrlich ascites cells using a bumetanide-sepharose affinity column.J. Membrane Biol. 03:135–147

    Google Scholar 

  10. Forbush, B., III, Palfrey, H.C. 1983. [3H]Bumetanide binding to membranes isolated from dog kidney outer medulla. Relationship to the Na,K,Cl co-transport system.J. Biol. Chem. 258:11787–11792

    PubMed  Google Scholar 

  11. Friedman, P.A. 1982. Bumetanide inhibition of [CO2+HCO 3 ]-dependent and independent equivalent electrical flux in renal cortical thick ascending limbs.J. Pharmacol. Exp. Ther. 238:407–414

    Google Scholar 

  12. Friedman, P.A., Andreoli, T.E. 1982. CO2-stimulated NaCl absorption in the mouse renal cortical thick ascending limb of Henle. Evidence for synchronous Na/H+ and Cl/HCO 3 exchange in apical plasma membranes.J. Gen. Physiol. 80:683–711

    PubMed  Google Scholar 

  13. Geck, P., Heinz, E. 1986. The Na−K−2Cl cotransport system.J. Membrane Biol. 91:97–105

    Google Scholar 

  14. Greger, R. 1981. Coupled transport of Na+ and Cl in the thick ascending limb of Henle's loop of rabbit nephrons.Scand. J. Audiol. Suppl. 14:1–15

    Google Scholar 

  15. Greger, R., Schlatter, E. 1981. Presence of luminal K+, a prerequisite for active NaCl transport in the cortical thick ascending limb of Henle's loop of rabbit kidney.Pfluegers Arch. 392:92–94

    Google Scholar 

  16. Greger, R., Velazquez, H. 1987. The cortical thick ascending limb and early distal convoluted tubule in the urinary concentrating mechanism.Kidney Int. 31:590–596

    PubMed  Google Scholar 

  17. Grossman, E.B., Lombardi, M.J., Hebert, S.C. 1989. ADH enhances NaCl absorption in mouse medullary thick ascending limbs (MTAL) without increasing O2 consumption (QO2).Kidney Int. 35:480 (Abstr.)

    Google Scholar 

  18. Guggino, W.B., Oberleithner, H., Giebisch, G. 1988. The amphibian diluting segment.Am. J. Physiol 254:F615-F627

    PubMed  Google Scholar 

  19. Haas, M., Forbush, B., III 1987. Photolabeling of a 150-kDa (Na+K+Cl) cotransport protein from dog kidney with a bumetanide analogue.Am. J. Physiol. 253:C243-C250

    PubMed  Google Scholar 

  20. Haas, M., Forbush, B., III. 1987. Na,K,Cl-cotransport system: Characterization by bumetanide binding and photolabelling.Kidney Int. 32:S134-S140

    Google Scholar 

  21. Haas, M., Forbush, B., III 1990. Two [3H]bumetanide binding sites on mouse kidney membranes: Identification of corresponding proteins by photoaffinity labelling.Biophys. J. 57:84a (Abstr)

    Google Scholar 

  22. Hebert, S.C. 1986. Hypertonic cell volume regulation in mouse thick limbs: II. Na−H and Cl−HCO3 exchange in basolateral membranes.Am. J. Physiol. 250:C920-C931

    PubMed  Google Scholar 

  23. Hebert, S.C., Andreoli, T.E. 1984. Control of NaCl transport in the thick ascending limb.Am. J. Physiol. 246:F745-F756

    PubMed  Google Scholar 

  24. Hebert, S.C., Andreoli, T.E. 1986. Ionic conductance pathways in the mouse medullary thick ascending limb of Henle. The paracellular pathway and electrogenic Cl absorption.J. Gen. Physiol. 87:567–590

    PubMed  Google Scholar 

  25. Hebert, S.C., Culpepper, R.M., Andreoli, T.E. 1981. NaCl transport in mouse medullary thick ascending limbs: II. ADH enhancement of transcellular NaCl cotransport; origin of the transepithelial voltage.Am. J. Physiol. 241:F432-F442

    PubMed  Google Scholar 

  26. Hebert, S.C., Culpepper, R.M., Andreoli, T.E. 1981. NaCl transport in mouse medullary thick ascending limbs. I. Functional nephron heterogeneity and ADH-stimulated NaCl cotransport.Am. J. Physiol. 241:F412-F431

    PubMed  Google Scholar 

  27. Hebert, S.C., Friedman, P.A., Andreoli, T.E. 1984. Effects of antidiuretic hormone on cellular conductive pathways in mouse medullary thick ascending limbs of Henle: I. ADH increases transcellular conductive pathways.J. Membrane Biol. 80:201–219

    Google Scholar 

  28. Hoffmann, E.K., Simonsen, L.O. 1989. Membrane mechanisms in volume and pH regulation in vertebrate cells.Physiol. Rev. 69:315–382

    PubMed  Google Scholar 

  29. Hoffmann, E.K., Sjoholm, C., Simonsen, L.O., 1983. Na,Cl cotransport in Ehrlich ascites tumor cells activated during volume regulation (regulatory volume increase).J. Membrane Biol. 76:269–280

    Article  Google Scholar 

  30. Hughes, P.M., A.D.C. Macknight, 1976. The regulation of cellular volume in renal cortical slices incubated in hyposmotic medium.J. Physiol. 257:137–154

    PubMed  Google Scholar 

  31. Ikehara, T., Yamaguchi, H., Hosokawa, K., Miyamoto, H. 1990. Kinetic mechanism of ATP action in Na+−K+Cl cotransport of HeLa cells determined by Rb+ influx studies.Am. J. Physiol. 258:C599-C609

    PubMed  Google Scholar 

  32. Kikeri, D., Azar, S., Sun, A., Zeidel, M.L., Hebert, S.C. 1990. Na+−H+ antiporter and Na+−(HCO 3 ) n symporter regulate antracellular pH in mouse medullary thick limbs of Henle.Am. J. Physiol. 258:F445-F456

    PubMed  Google Scholar 

  33. Kikeri, D., Sun, A., Zeidel, M.L., Hebert, S.C. 1989. Cell membranes impermeable to NH3.Nature 339:478–480

    PubMed  Google Scholar 

  34. Kirk, K.L., Dibona, D.R., Schafer, J.A. 1984. Morphologic response of the rabbit cortical collecting tubule to peritubular hypotonicity: Quantitative examination with differential interference contrast microscopy.J. Membrane Biol. 79:53–64

    Google Scholar 

  35. Knepper, M.A., Packer, R., Good, D.W. 1989. Ammonium transport in the kidney.Physiol. Rev. 69:179–249

    PubMed  Google Scholar 

  36. Koenig, B., Ricapito, S., Kinne, R. 1983. Chloride transport in the thick ascending limb of Henle's loop: Potassium dependence and stoichiometry of the NaCl cotransport system in plasma membrane vesicles.Pfluegers Arch. 399:173–179

    Google Scholar 

  37. Mandel, L.J. 1986. Primary active sodium transport, oxygen consumption, and ATP: Coupling and regulation,Kidney Int. 29:3–9

    PubMed  Google Scholar 

  38. Molony, D.A., Andreoli, T.E. 1988. Diluting power of thick limbs of Henle: 1. Peritubular hypertonicity blocks basolateral Cl channels.Am. J. Physiol. 255:F1128-F1137

    PubMed  Google Scholar 

  39. Molony, D.A., Reeves, W.B., Hebert, S.C., Andreoli, T.E. 1987. ADH increases apical Na,K,2Cl entry in mouse medullary thick ascending limbs of Henle.Am. J. Physiol. 252:F177-F187

    PubMed  Google Scholar 

  40. Morel, F. 1981. Sites of hormone action in the mammalian nephron.Am. J. Physiol. 240:F159-F164

    PubMed  Google Scholar 

  41. Musch, M.W., Orellana, S.A., Kimberg, L.S., Field, M., Halm, D.R., Krasny, E.J., Frizzell, R.A. 1982. Na+−K+−Cl co-transport in the intestine of a marine teleost.Nature 300:351–353

    PubMed  Google Scholar 

  42. O-Grady, S.M., Palfrey, H.C., Field, M. 1987. Characteristics and functions of Na−K−Cl cotransport in epithelial tissues.Am. J. Physiol. 253:C177-C192

    PubMed  Google Scholar 

  43. Reuss, L. 1989. Ion transport across gallbladder epithelium.Physiol. Rev. 69:503–545

    PubMed  Google Scholar 

  44. Silva, P., Stoff, J.S., Solomon, R.J., Rosa, R., Stevens, A., Epstein, F.H. 1980. Oxygen cost of chloride transport in perfused rectal gland ofSqualus acanthias.J. Membrane Biol. 53:215–221

    Google Scholar 

  45. Stokes, J.B. 1984. Sodium chloride absorption by the urinary bladder of the winter flounder. A thiazide-sensitive, electrically neutral transport system.J. Clin. Invest. 74:7–16

    PubMed  Google Scholar 

  46. Sun, A.M., Hebert, S.C. 1989. ADH alters the K+ requirement for the luminal, furosemide-sensitive NaCl symporter in mouse medullary thick limbs (MTAL).Kidney Int. 35:489 (Abstr.)

    Google Scholar 

  47. Uchida, S., Endou, H. 1988. Substrate specificity to maintain cellular ATP along the mouse nephron.Am. J. Physiol. 255:F977-F983

    PubMed  Google Scholar 

  48. Warnock, D.G., Eveloff, J.L. 1982. NaCl entry mechanisms in the luminal membrane of the renal tubule.Am. J. Physiol. 242:F561-F574

    PubMed  Google Scholar 

  49. Welsh, M.J. 1984. Energetics of chloride secretion in canine tracheal epithelium: Comparison of the metabolic cost of chloride transport with the metabolic cost of sodium transport.J. Clin. Invest. 74:262–268

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sun, A., Grossman, E.B., Lombardi, M. et al. Vasopressin alters the mechanism of apical Cl entry from Na+:Cl to Na+:K+:2Cl cotransport in mouse medullary thick ascending limb. J. Membrain Biol. 120, 83–94 (1991). https://doi.org/10.1007/BF01868594

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01868594

Key Words

Navigation