Skip to main content
Log in

Interleukin-1 and related pro-inflammatory cytokines in the treatment of bacterial infections in neutropenic and non-neutropenic animals

  • Published:
Biotherapy

Abstract

Bacterial infections in the immunocompromized host cause considerable mortality, and even the recently developed antimicrobial strategies often fail to cure these infections, especially in granulocytopenic patients. Cytokines and hematopoietic growth factors have been shown to stimulate host defense mechanismsin vitro andin vivo. We discuss the possible role of the pro-inflammatory cytokines interleukin-1, tumor necrosis factor-α, interleukin-6 and interleukin-8 as modulators of host resistance to bacterial infections. Interleukin-1 has been shown effective in various animal models of potentially lethal bacterial infection, even during severe granulocytopenia. The protective mechanism of interleukin-1 may be mediated via downregulation of cytokine receptors and cytokine production, and via induction of acute phase proteins. Moreover, in subacute and chronic infections interleukin-1 interferes with microbial outgrowth, via mechanisms that have only been partially elucidated.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Abbreviations

G-CSF:

granulocyte colony-stimulating factor

M-CSF:

monocyte colony-stimulating factor

GM-CSF:

granulocyte-monocyte colony-stimulating factor

IFN-γ :

interferon-gamma

IL:

interleukin

LAK:

lymphokine-activated killer

LPS:

lipopolysaccharide

TNF:

tumor necrosis factor

References

  1. Bodey GP, Buckley M, Sathe YS, Freireich EJ. Quantitative relationships between circulating leukocytes and infections in patients with leukemia. Ann Intern Med 1966; 64: 328–340.

    PubMed  Google Scholar 

  2. Lieschke GJ, Burgess AW. Drug therapy: Granulocyte colony-stimulating factor and granulocyte-macrophage colony-stimulating factor (first of two parts). N Engl J Med 1992; 327: 28–35.

    PubMed  Google Scholar 

  3. Dinarello CA. Role of interleukin-1 in infectious diseases. Immunol Rev 1992; 127: 119–146.

    PubMed  Google Scholar 

  4. Oppenheim JJ, Kovacs EJ, Matsushima K, Durum SK. There is more than one interleukin-1. Immunol Today 1986; 7: 45–56.

    Google Scholar 

  5. Dinarello CA, Cannon JG, Wolff SM. New concepts on the pathogenesis of fever. Rev Infect Dis 1988; 10: 168–189.

    PubMed  Google Scholar 

  6. Dinarello CA, Cannon JG, Mier JW, Bernheim HA, LoPreste G. Multiple biological activities of human recombinant interleukin-1. J Clin Invest 1986; 77: 1734–1739.

    PubMed  Google Scholar 

  7. Dinarello CA. Interleukin-1. FASEB J 1988; 2: 108–115.

    PubMed  Google Scholar 

  8. Dinarello CA. Interleukin-1 and interleukin-1 antagonism. Blood 1991; 77: 1627–1652.

    PubMed  Google Scholar 

  9. Dinarello CA. Interleukin-1 and the pathogenesis of the acutephase response. N Engl J Med 1984; 311: 1413–1419.

    PubMed  Google Scholar 

  10. Van der Meer JWM. The effects of recombinant interleukin-1 and recombinant tumor necrosis factor on non-specific resistance to infection. Biotherapy 1988; 1: 19–25.

    PubMed  Google Scholar 

  11. Alexander HR, Doherty GM, Fraker DL, Block MI, Swedenborg JE, Norton JA. Human recombinant interleukin-1α protection against the lethality of endotoxin and experimental sepsis in mice. J Surg Res 1991; 50: 421–424.

    PubMed  Google Scholar 

  12. Vogels MTE, Van der Meer JWM. Use of immune modulators in nonspecific therapy of bacterial infections. Antimicrob Agents Chemother 1992; 36: 1–5.

    PubMed  Google Scholar 

  13. Van der Meer JWM, Barza M, Wolff SM, Dinarello CA. A low dose of recombinant interleukin 1 protects granulocytopenic mice from lethal Gram-negative infection. Proc Natl Acad Sci USA 1988; 85: 1620–1623.

    PubMed  Google Scholar 

  14. Van't Wout JW, Van der Meer JWM, Barza M, Dinarello CA. Protection of neutropenic mice from lethalCandida albicans infection by recombinant interleukin 1. Eur J Immunol 1988; 18: 1143–1146.

    PubMed  Google Scholar 

  15. Porat R, Clarck BD, Wolff SM, Dinarello CA. Intrleukin-1 enhances the growth of virulent strains ofEscherichia coli via a specific receptor-like interaction. Science 1991; 254: 430–432.

    PubMed  Google Scholar 

  16. Stork LC, Peterson VM, Rundus CH, Robinson WA. Interleukin-1 enhances murine granulopoiesisin vivo. Exp Hematol 1988; 16: 163–167.

    PubMed  Google Scholar 

  17. Fibbe WE, Van der Meer JWM, Falkenburg JHF, Hamilton MS, Kluin PM, Dinarello CA. A single low dose of human recombinant interleukin 1 accelerates the recovery of neutrophils in mice with cyclophosphamide-induced neutropenia. Exp Hematol 1989; 17: 805–808.

    PubMed  Google Scholar 

  18. Kullberg BJ, Van't Wout JW, Van Furth R. Role of granulocytes in enhanced host resistance toCandida albicans induced by recombinant interleukin-1. Infect Immun 1990; 58: 3319–3324.

    PubMed  Google Scholar 

  19. Kullberg BJ, Van't Wout JW, Van Furth R. No effect of recombinant human interleukin-1 on the numbers of peripheral blood and peritoneal leukocytes during an acute inflammation. Inflammation 1991; 15: 457–470.

    PubMed  Google Scholar 

  20. Vogels MTE, Lindley IJD, Curfs JAHJ, Eling WMC, Van der Meer JWM. Effects of interleukin-8 on non-specific resistance to infection in neutropenic and normal mice. Antimicrob Agents Chemother 1993; 37: 276–280.

    PubMed  Google Scholar 

  21. Georgilis K, Schaeffer C, Dinarello CA, Klempner MS. Human recombinant interleukin-1β has no effect on intracellular calcium or on functional responses of human neutrophils. J Immunol 1987; 138: 3403–3407.

    PubMed  Google Scholar 

  22. Yoshimura T, Matsushima K, Oppenheim JJ, Leonard EJ. Neutrophil chemotactic factor produced by lipopolysaccharide (LPS)-stimulated human blood mononuclear leukocytes: Partial characterization and separation from interleukin-1 (IL1). J Immunol 1987; 139: 788–793.

    PubMed  Google Scholar 

  23. Langermans JAM, Van der Hulst MEB, Nibbering PH, Hiemstra PS, Fransen L, Van Furth R. IFN-γ-induced Larginine-dependent toxoplasmastatic activity in murine peritoneal macrophages is mediated by endogenous tumor necrosis factor-α. J Immunol 1992; 148: 568–574.

    PubMed  Google Scholar 

  24. Vogels MTE, Hermsen CC, Huys HLPG, Eling WMC, Van der Meer JWM. Roles of tumor necrosis factor alpha, granulocyte-macrophage colony-stimulating factor, plateletactivating factor, and arachidonic acid metabolites in interleukin-1-induced resistance to infection in neutropenic mice. Infect Immun 1944; 62: 2065–2070.

    Google Scholar 

  25. Cannon JG, Thompkins RG, Gelfand JA,et al. Circulating interleukin-1 and tumor necrosis factor in septic shock and experimental endotoxin fever. J Infect Dis 1990; 161: 79–84.

    PubMed  Google Scholar 

  26. Waage A, Brandtzaeg P, Halstensen A, Kierulf P, Espevik T. The complex pattern of cytokines in serum from patients with meningococcal septic shock. Association between interleukin 6, interleukin 1, and fatal outcome. J Exp Med 1989; 169: 333–338.

    PubMed  Google Scholar 

  27. Holtmann H, Wallach D. Down regulation of the receptors for tumor necrosis factor by interleukin-1 and 4β-phorbol-12-myristate-13-acetate. J Immunol 1987; 139: 1161–1167.

    PubMed  Google Scholar 

  28. Ye K, Clark BD, Dinarello CA. Interleukin-1 downregulates gene and surface expression of interleukin-1 receptor type I by destabilizing its mRNA, whereas interleukin-2 increases its expression. Immunol 1992; 75: 427–434.

    Google Scholar 

  29. Neta R, Oppenheim JJ, Douches SD. Interdependence of the radioprotective effects of human recombinant interleukin-1α, tumor necrosis factor-α, granulocyte colony-stimulating factor, and murine recombinant granulocyte macrophage colonystimulating factor. J Immunol 1988; 140: 108–114.

    PubMed  Google Scholar 

  30. White CW, Ghezzi P. Protection against pulmonary oxygen toxicity by interleukin-1 and tumor necrosis factor. Role of antioxydant enzymes and effect of cyclooxygenase inhibitors. Biotherapy 1989; 1: 361–366.

    PubMed  Google Scholar 

  31. Brown J, White CW, Terada LS,et al. Interleukin-1 pretreatment decreases ischaemia reperfusion injury. Proc Natl Acad Sci USA 1990; 87: 5026–5030.

    PubMed  Google Scholar 

  32. Puri RK, Travis WD, Rosenberg SA. Decrease in interleukin 2-induced leakage in the lungs of mice by administration of recombinant interleukin-1α in vivo. Cancer Res 1989; 49: 969–976.

    PubMed  Google Scholar 

  33. Jimenez JJ, Wong GHW, Yunis AA. Interleukin 1 protects from cytosine arabinoside-induced alopecia in the rat model. FASEB J 1991; 5: 2456–2458.

    PubMed  Google Scholar 

  34. Czuprynski CJ, Brown JF, Young KM, Cooley AJ, Kurtz RS. Effects of murine recombinant interleukin 1 alpha on the host response to bacterial infection. J Immunol 1988; 140: 962–968.

    PubMed  Google Scholar 

  35. Vogels MTE, Cantoni L, Carelli M, Sironi M, Ghezzi P, Van der Meer JWM. Role of acute phase proteins in interleukin-1-induced resistance to bacterial infection in mice. Antimicrob Agents Chemother 1993; 37: 2527–2533.

    PubMed  Google Scholar 

  36. Beutler B, Cerami A. Cachectin/tumor necrosis factor: an endogenous mediator of shock and inflammation. Immunol Res 1986; 5: 281–293.

    PubMed  Google Scholar 

  37. Dinarello CA, Cannon JG, Wolff SM. Tumor necrosis factor (cachectin) is an endogenous pyrogen and induces production of interleukin-1. JExp Med 1986; 163: 1433–1450.

    Google Scholar 

  38. Beutler B, Milsark IW, Cerami AC. Passive immunization against cachexin/tumor necrosis factor protects mice from lethal effect of endotoxin. Science 1985; 229: 869–871.

    PubMed  Google Scholar 

  39. Cerami A, Beutler B. The role of cachectin/TNF in endotoxic shock and cachexia. Immunol Today 1988; 9: 28–31.

    PubMed  Google Scholar 

  40. Tracey KJ, Lowry SF, Fahey TJ, Albert JD, Fong Y, Hesse D. Cachectin/tumor necrosis factor induces lethal shock and stress hormone responses in the dog. Surg Gynecol Obstet 1987; 164: 415–422.

    PubMed  Google Scholar 

  41. Tracey KJ, Beutler B, Lowry SF. Shock and tissue injury induced by recombinant human cachectin. Science 1986; 234: 470–474.

    PubMed  Google Scholar 

  42. Opal SM, Cross AS, Kelly NM,et al. Efficacy of a monoclonal antibody directed against tumor necrosis factor in protecting neutropenic rats from lethal infection withPseudomonas aeruginosa. J Infect Dis 1990; 161: 1148–1152.

    PubMed  Google Scholar 

  43. Figari IS, Mori NA, Palladino MA Jr. Regulation of neutrophil migration and Superoxide production by recombinant tumor necrosis factors-α and -β: comparison to recombinant interferon-γ and interleukin-1α. Blood 1987; 70: 979–984.

    PubMed  Google Scholar 

  44. Ulich TR, del Castillo J, Guo K, Souza L. The hematologic effects of chronic administration of the monokines tumor necrosis factor, interleukin-1, and granulocyte-colony stimulating factor on bone marrow and circulation. Am J Pathol 1989; 134: 149–159.

    PubMed  Google Scholar 

  45. Steinbeck MA, Roth JA. Neutrophil activation by recombinant cytokines. Rev Infect Dis 1989; 11: 549–568.

    PubMed  Google Scholar 

  46. Weiss SJ. Tissue destruction by neutrophils. N Engl J Med 1989; 320: 365–376.

    PubMed  Google Scholar 

  47. Nacy CA, Meierovics AI, Belosevic M, Green SJ. Tumor necrosis factor-α: central regulatory cytokine in the induction of macrophage antimicrobial activities. Pathobiol 1991; 59: 182–184.

    Google Scholar 

  48. Nakane A, Minagawa T, Kato K. Endogenous tumor necrosis factor (cachectin) is essential to host resistance againstListeria monocytogenes infection. Infect Immun 1988; 56: 2563–2569.

    PubMed  Google Scholar 

  49. Kindler V, Sappino AP, Grau GE, Piguet PF, Vassali P. The inducing role of tumor necrosis factor in the development of bactericidal granulomas during BCG infection. Cell 1989; 56: 731–740.

    PubMed  Google Scholar 

  50. Echtenacher B, Falk W, Mannel DN, Krammer PH. Requirement of endogenous tumor necrosis factor/cachectin for recovery from experimental peritonitis. J Immunol 1990; 145: 3762–3766.

    PubMed  Google Scholar 

  51. Vogels MTE, Van der Meer JWM. Comparison of the capacity of murine tumor necrosis factor and human interleukin-1 to prolong survival in lethal bacterial infection. Eur Cytokine Netw 1992; 2: 221.

    Google Scholar 

  52. Blanchard DK, Djeu JY, Klein TW, Friedman H, Stewart WE. Protective effect of tumor necrosis factor in experimentalLegionella pneumophila infections of mice via activation of PMN function. J Leukocyte Biol 1988; 43: 429–435.

    PubMed  Google Scholar 

  53. Djeu JY, Blanchard DK, Halkias D, Friedman H. Growth inhibition ofCandida albicans by human polymorphonuclear neutrophils: activation by interferon-γ and tumor necrosis factor. J Immunol 1986; 137: 2980–2984.

    PubMed  Google Scholar 

  54. Ferrante A. Tumor necrosis factor alpha potentiates neutrophil antimicrobial activity: Increased fungal activity againstTorulopsis glabrata andCandida albicans and associated increases in oxigen radical production and lysosomal enzyme release. Infect Immun 1989; 57: 2115–2122.

    PubMed  Google Scholar 

  55. Seckinger P, Isaaz S, Dayer JM. A human inhibitor of tumor necrosis factorα. J Exp Med 1988; 167: 1511–1516.

    PubMed  Google Scholar 

  56. Neta R, Vogel SN, Sipe JD, Wong GG, Nordan RP. Comparison ofin vivo effects of human recombinant IL 1 and human recombinant IL 6 in mice. Lymphokine Res 1988; 7: 403–412.

    PubMed  Google Scholar 

  57. Czuprynski CJ, Haak-Frendscho M, Maroushek N, Brown JF. Effects of recombinant human interleukin-6 alone and in combination with recombinant interleukin-1α and tumor necrosis factor-alpha on antibacterial resistance in mice. Antimicrob Agents Chemother 1992; 36: 68–70.

    PubMed  Google Scholar 

  58. Liu Z, Simpson RJ, Cheers C. Recombinant interleukin-6 protects mice against experimental bacterial infection. Infect Immun 1992; 60: 4402–4406.

    PubMed  Google Scholar 

  59. Van der Meer JWM, Helle M, Aarden L. Comparison of the effects of recombinant interleukin 6 and recombinant interleukin 1 in nonspecific resistance to infection. Eur J Immunol 1989; 19: 413–416.

    PubMed  Google Scholar 

  60. Peveri P, Walz A, Dewald B, Baggiolini M. A novel neutrophilactivating factor produced by human mononuclear phagocytes. J Exp Med 1988; 167: 1547–1559.

    PubMed  Google Scholar 

  61. Djeu JY, Matsushima K, Oppenheim JJ, Shiotsuki K, Blanchard DK. Functional activation of human neutrophils by recombinant monocyte-derived neutrophil chemotactic factor/IL-8. J Immunol 1990; 144: 2205–2210.

    PubMed  Google Scholar 

  62. Nibbering PH, Pos O, Stevenhagen A, Van Furth R. Interleukin-8 enhances nonoxidative intracellular killing ofMycobacterium fortuitum by human granulocytes. Infect Immun 1993; 61: 3111–3116.

    PubMed  Google Scholar 

  63. Lohmann-Matthes ML. Interaction of macrophages and cytokines. Curr Opinion Immunol 1989; 2: 33–38.

    Google Scholar 

  64. Chollet-Martin S, Montravers P, Gibert C,et al. High levels of interleukin-8 in the blood and alveolar spaces of patients with pneumonia and adult respiratory distress syndrome. Infect Immun 1993; 61: 4553–4559.

    PubMed  Google Scholar 

  65. Donnelly SC, Strieter RM, Kunkel SL,et al. Interleukin-8 and development of adult respiratory distress syndrome in at-risk patient groups. Lancet 1993; 341: 643–647.

    PubMed  Google Scholar 

  66. Smith JW, Longo DL, Alvord WG,et al. The effects of treatment with interleukin-la on platelet recovery after high-dose carboplatin. N Engl J Med 1993; 328: 756–761.

    PubMed  Google Scholar 

  67. Ozaki Y, Ohashi A, Minami A, Nakamura S. Enhanced resistance of mice to bacterial infection induced by recombinant human interleukin-la. Infect Immun 1987; 55: 1436–1440.

    PubMed  Google Scholar 

  68. Minami A, Fujimoto K, Ozaki Y, Nakamura S. Augmentation of host resistance to microbial infections by recombinant human interleukin-la. Infect Immun 1988; 56: 3116–3120.

    PubMed  Google Scholar 

  69. Morikage T, Mizushima Y, Sakamoto K, Yano S. Prevention of fatal infections by recombinant human interleukin-α in normal and anticancer drug-treated mice. Cancer Res 1990; 50: 2099–2104.

    PubMed  Google Scholar 

  70. Campanile F, Binaglia L, Boraschi D, Tagliabue A, Fioretti MC, Puccetti P. Antibacterial resistance induced by recombinant interleukin-1 in myelosuppressed mice: effect of treatment schedule and correlation with colony-stimulating activity in the bloodstream. Cell Immunol 1990; 128: 250–260.

    PubMed  Google Scholar 

  71. Nakamura S, Minami A, Fujimoto K, Kojima T. Combination effect of recombinant human interleukin-α with antimicrobial agents. Antimicrob Agents Chemother 1989; 33: 1804–1810.

    PubMed  Google Scholar 

  72. McIntyre KW, Unowsky J, DeLorenzo W, Benjamin W. Enhancement of antibacterial resistance of neutropenic bone marrow-suppressed mice by interleukin-α. Infect Immun 1989; 57: 48–54.

    PubMed  Google Scholar 

  73. Kampschmidt RF, Pulliam LA. Stimulation of antimicrobial activity in the rat with leukocyte endogenous mediator. J Reticuloendothel Soc 1975; 17: 162–169.

    PubMed  Google Scholar 

  74. Morrissey PJ, Charrier K. Interleukin-1 administration to C3H/HeJ mice after but not prior to infection increases resistance toSalmonella typhimurium. Infect Immun 1991; 59: 4729–4731.

    PubMed  Google Scholar 

  75. Pelkonen S, Pluschke G. Recombinant interleukin-1 stimulates clearance ofEscherichia coli bacteremia. Microb Pathogen 1989; 6: 415–424.

    Google Scholar 

  76. Gladue R, Girard A, Newborg M. Enhanced antibacterial resistance in neutropenic mice treated with human recombinant interleukin-1 beta. Agents Actions 1988; 24: 130–136.

    PubMed  Google Scholar 

  77. Czuprynski CJ, Brown JF. Purified human and recombinant murine interleukin-1 induced accumulation of inflammatory peritoneal neutrophils and mononuclear phagocytes: possible contributions to antibacterial resistance. Microb Pathogen 1987; 3: 377–386.

    Google Scholar 

  78. Czuprynski CJ, Brown JF. Recombinant murine interleukinla enhancement of nonspecific antibacterial resistance. Infect Immun 1987; 55: 2061–2065.

    PubMed  Google Scholar 

  79. Kurtz RS, Young KM, Czuprynski CJ. Separate and combined effects of recombinant interleukin-1α and gamma interferon on antibacterial resistance. Infect Immun 1989; 57: 553–558.

    PubMed  Google Scholar 

  80. Kurtz RS, Roll JT, Czuprynski CJ. Recombinant human interleukin 1 alpha enhances anti-Listeria resistance in both genetically resistant and susceptible strains of mice. Immunol Lett 1988; 18: 289–292.

    PubMed  Google Scholar 

  81. Vogels MTE, Sweep CGJ, Hermus ARMM, Van der Meer JWM. Interleukin-1-induced nonspecific resistance to bacterial infection in mice is not mediated by glucocorticosteroids. Antimicrob Agents Chemother 1992; 36: 2785–2789.

    PubMed  Google Scholar 

  82. Williams DM, Magee DM, Bonewald LF,et al. A rolein vivo for tumor necrosis factor alpha in host defense againstChlamydia trachomatis. Infect Immun 1990; 58: 1572–1576.

    PubMed  Google Scholar 

  83. Alexander HR, Sheppard BC, Jensen JC,et al. Treatment with recombinant human tumor necrosis factor-alpha protects rats against the lethality, hypotension, and hypothermia of Gramnegative sepsis. J Clin Invest 1991; 88: 34–39.

    PubMed  Google Scholar 

  84. Cross AS, Sadoff JC, Kelly N, Bernton E, Gemski P. Pretreatment with recombinant murine tumor necrosis factorα/cachectin and murine recombinant interleukin-1α protects mice from lethal bacterial infection. J Exp Med 1989; 169: 2021–2027.

    PubMed  Google Scholar 

  85. Parant F, Tavernier J, Fiers W, Parant M. Comparative activity of human and murine tumor necrosis factor in toxicity and antiinfectious assays in mice. Microb Pathogen 1990; 8: 143–149.

    Google Scholar 

  86. Vaudaux P, Grau GE, Huggler E,et al. Contribution of tumor necrosis factor to host defense against staphylococci in a guinea pig model of foreign body infections. J Infect Dis 1992; 166: 58–64.

    PubMed  Google Scholar 

  87. Havell EA. Production of tumor necrosis factor during murine listeriosis. J Immunol 1987; 139: 4225–4231.

    PubMed  Google Scholar 

  88. Desiderio JV, Kiener PA, Lin FP, Warr GA. Protection of mice againstListeria monocytogenes infection by recombinant human tumor necrosis factor. Infect Immun 1989; 57: 1615–1617.

    PubMed  Google Scholar 

  89. Nauciel C, Espinasse-Maes F. Role of gamma-interferon and tumor necrosis factor alpha in resistance toSalmonella typhimurium infection. Infect Immun 1992; 60: 450–454.

    PubMed  Google Scholar 

  90. Bermudez LEM, Young LS. Tumor necrosis factor, alone or in combination with IL-2, but not IFN-γ, is associated with macrophage killing ofMycobacterium avium complex. J Immunol 1988; 140: 3006–3013.

    PubMed  Google Scholar 

  91. Bermudez LEM, Stevens P, Kolonoski P, Wu M, Young LS. Treatment of experimental disseminatedMycobacterium avium complex infection in mice with recombinant IL-2 and tumor necrosis factor. J Immunol 1989; 143: 2996–3000.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

van der Meer, J.W.M., Vogels, M.T.E. & Kullberg, B.J. Interleukin-1 and related pro-inflammatory cytokines in the treatment of bacterial infections in neutropenic and non-neutropenic animals. Biotherapy 7, 161–167 (1994). https://doi.org/10.1007/BF01878482

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF01878482

Key words

Navigation