Skip to main content
Log in

Does a single local absorptiometric bone measurement indicate the overall skeletal status? Implications for osteoporosis and osteoarthritis of the hip

  • Originals
  • Published:
Clinical Rheumatology Aims and scope Submit manuscript

Summary

Regional bone mineral content (BMC) and density (BMD) (head, arms, chest, spine, pelvis, legs) of a total body dual photon153Gd absorptiometry (DPA) scan were measured in 20 healthy postmenopausal women, 27 postmenopausal women with hip fracture, and 17 postmenopausal women with osteoarthritis of the hip. In addition, local BMC and BMD were measured in the proximal and distal regions of the distal forearm (BMCprox, BMDprox, BMCdis, BMDdist) by single photon absorptiometry (SPA); and in the lumbar spine (BMCL2-L4 and BMDL2-L4) by153Gd DPA. The overall impression was a reduction of bone mass in hip fracture patients compared with healthy controls and an increase in the bone mass of osteoarthritic patients. These results were valid using both regional values of the total body scan, and local forearm and lumbar spine measurements, and statistically significant using one-way analysis of variance. There were, however, also significant within-group between-region differences (one-way analysis of variance), showing that the bone mass of the pelvis and legs in hip fracture patients was more reduced than in the remaining skeleton; in osteoarthritic patients it was not increased but rather unchanged or slightly reduced. The differences between the level of the three local measurements (BMDprox BMDdist BMDL2-L4), on the one hand, and the level of the six regional BMD values, on the other hand, were investigated by the two-way analysis of variance: local measurements = rows; regional values = columns. This analysis showed that none of the three local measurements was statistically better than the other two in predicting the overall level of skeletal bone mass as judged by the six regional values. We conclude that serious osteoporotic bone loss has a generalized nature, however, with a tendency towards lower values in the regions affected by fracture (viz: low bone mass in the legs of femoral neck fracture patients). Osteoarthritis may be associated with a high bone mass in most areas, but low values in the affected regions. Local lumbar spine measurement of bone mass by DPA is not superior to local forearm measurement of bone mass by SPA in predicting the nature of overall osteoporotic or osteoarthritic bone change.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Newton-John, H.F., Morgan, D.B. The loss of bone with age, osteoporosis, and fractures. Clin Orthop Rel Res 1970, 71, 229–252.

    CAS  Google Scholar 

  2. Cummings, S.R., Kelsey, J.L., Nevitt, M.C., O'Dowd, K.J. Epidemiology of osteoporosis and osteoporotic fractures. Epidemiol Rev 1985, 7, 178–208.

    PubMed  CAS  Google Scholar 

  3. Johnson, L.C. Morphological analysis in pathology. In: Frost, H.M. (ed.) Bone Biodynamics. Boston: Little, Brown & Co., 1964, 543–654.

    Google Scholar 

  4. Schlenker, R.A., Von Seggen, W.W. The distribution of cortical and trabecular bone mass along the length of the radius and ulna and implications for in vivo bone mass measurements. Calcif Tissue Res 1976, 20, 41–52.

    Article  PubMed  CAS  Google Scholar 

  5. Nilas, L., Nørgaard, H., Pødenphant, J., Gotfredsen, A., Christiansen, C. Bone composition in the distal forearm. Scand J Clin Lab Invest 1987, 47, 41–46.

    Article  PubMed  CAS  Google Scholar 

  6. Riggs, B.L., Wahner, H.W., Dunn, W.L., Mazess, R.B., Offord, K.P., Melton, L.J. III. Differential changes in bone mineral density of the appendicular and axial skeleton with aging. Relationship to spinal osteoporosis. J Clin Invest 1980, 67, 328–335.

    Article  Google Scholar 

  7. Seeman, E., Wahner, H.W., Offord, K.P., Kumar, R., Johnson, W.S., Riggs, B.L. Differential effects of endocrine dysfunction on the axial and the appendicular skeleton. J Clin Invest 1982, 69, 1302–1309.

    Article  PubMed  CAS  Google Scholar 

  8. Riggs, B.L., Wahner, H.W., Seeman, E., Offord, K.P., Dunn, W.L., Mazees, R.B., Johnson, K.A., Melton, L.J. III. Changes in bone mineral density of the proximal femur and spine with aging. Difference between the postmenopausal and senile osteoporosis syndrome. J Clin Invest 1982, 70, 716–723.

    Article  PubMed  CAS  Google Scholar 

  9. Genant, H.K., Cann, C.E., Ettinger, B., Gordan, G.S. Quantitative computed tomography of vertebral spongiosa: A sensitive method for detecting early bone loss after oophorectomy. Ann Intern Med 1982, 97, 699–705.

    PubMed  CAS  Google Scholar 

  10. Nordin, B.E.C. Clinical significance and pathogenesis of osteoporosis. Br Med J 1971, 1, 571–576.

    PubMed  CAS  Google Scholar 

  11. Grubb, S.A., Jacobsen, P.C., Awbrey, B.J., McCartney, W.H., Vincent, L.M., Talmage, R.V. Bone density in osteoporotic women: A modified distal radius density measurement procedure to develop an “at risk” value for use in screening women. J Orthop Res 1984, 2, 322–327.

    Article  PubMed  CAS  Google Scholar 

  12. Aloia, J.F., Cohn, S.H., Vaswani, A., Yeh, J.K., Yuen, K., Ellis, K. Risk factors for postmenopausal osteoporosis. Am J Med 1985, 78, 95–100.

    Article  PubMed  CAS  Google Scholar 

  13. Christiansen, C., Riis, B.J., Rødbro, P. Prediction of rapid bone loss in postmenopausal women. Lancet 1987, i, 1105–1108.

    Article  Google Scholar 

  14. Riis, B.J., Nilas, L., Christiansen, C. Does calcium potentiate the effect of estrogen therapy on postmenopausal bone loss? Bone Mineral 1987, 2, 1–9.

    CAS  Google Scholar 

  15. Ott, S.M., Kilcoyne, R.F., Chesnut, C.H. III. Ability of four different techniques of measuring bone mass to diagnose vertebral fractures in postmenopausal women. J Bone Min Res 1987, 2, 201–210.

    CAS  Google Scholar 

  16. Gotfredsen, A., Pødenphant, J., Nilas, L., Christiansen, C. Discriminative ability of total body bone mineral measured by dual photon absorptiometry. Scand J Clin Lab Invest 1989, 49, 125–134.

    Article  PubMed  CAS  Google Scholar 

  17. Nilas, L., Gotfredsen, A., Riis, B.J., Christiansen, C. The diagnostic validity of local and total bone mineral measurements in postmenopausal osteoporosis and osteoarthritis. Clin Endocrinol 1986, 25, 711–720.

    Article  CAS  Google Scholar 

  18. Awbrey, B.J., Jacobson, P.C., Grubb, S.A., McCartney, W.H., Vincent, L.M., Talmage, R.V. Bone density in women: a modified procedure for measurement of distal radial density. J Orthop Res 1984, 2, 314–321.

    Article  PubMed  CAS  Google Scholar 

  19. Talmage, R.V., Stinnett, S.S., Landwehr, J.T., Vincent, L.M., McCartney, W.H. Age-related loss of bone mineral density in non-athletic and athletic women. Bone Mineral 1986, 1, 115–125.

    CAS  Google Scholar 

  20. Nilas, L., Borg, J., Gotfredsen, A., Christiansen, C. Comparison of single- and dual-photon absorptiometry in postmenopausal bone mineral loss. J Nucl Med 1985, 26, 1257–1262.

    PubMed  CAS  Google Scholar 

  21. Pocock, N.A., Eisman, J.A., Yeates, M.G., Sambrook, P.N., Ebert, S., Wren, B.G. Limitations of forearm bone densitometry as an index of vertebral or femoral neck osteopenia. J Bone Min Res 1986, 1, 369–375.

    CAS  Google Scholar 

  22. Manzke, E., Chesnut, C.H., Wergedal, J.E., Baylink, D.J., Nelp, W.B. Relationship between local and total bone mass in osteoporosis. Metabolism 1975, 24, 605–615.

    Article  PubMed  CAS  Google Scholar 

  23. Krølner, B., Pors Nielsen, S., Lund, B.I., Lund, B.J., Sørensen, O.H., Uhrenholdt, A. Measurement of bone mineral content (BMC) of the lumbar spine, II. Correlation between forearm BMC and lumbar spine BMC. Scand J Clin Lab Invest 1980, 40, 665–670.

    Article  PubMed  Google Scholar 

  24. Horsman, A., Burkinshaw, L., Pearson, D., Oxby, C.B., Milner, R.M. Estimating total body calcium from peripheral bone measurements. Calcif Tissue Int 1983, 35, 135–144.

    Article  PubMed  CAS  Google Scholar 

  25. Mazess, R.B., Peppler, W.W., Chesney, R.W., Lange, T.A., Lindgren, U., Smith, E., Jr. Does bone measurement on the radius indicate skeletal status? Concise communication. J Nucl Med 1983, 25, 281–288.

    Google Scholar 

  26. Gotfredsen, A., Borg, J., Nilas, L., Tjellesen, L., Christiansen, C. Representativity of regional to total bone mineral in healthy subjects and “anticonvulsive treated” epileptic patients. Measurements by single and dual photon absorptiometry. Eur J Clin Invest 1986, 16, 198–203.

    Article  PubMed  CAS  Google Scholar 

  27. Gotfredsen, A., Borg, J., Christiansen, C., Mazess, R.B. Total body bone mineral in vivo by dual photon absorptiometry. I. Measurement procedures. Clin Physiol 1984, 4, 343–355.

    Article  PubMed  CAS  Google Scholar 

  28. Christiansen, C., Rødbro, P., Jensen, H. Bone mineral content in the forearm measured by photon absorptiometry. J Clin Lab Invest 1975, 35, 323–330.

    Article  PubMed  CAS  Google Scholar 

  29. Nilas, L., Pødenphant, J., Riis, B.J., Gotfredsen, A., Christiansen, C. Usefulness of regional bone measurements in patients with osteoporotic fractures of the spine and distal forearm. J Nucl Med 1987, 28, 960–965.

    PubMed  CAS  Google Scholar 

  30. Dunn, W.L., Wahner, H.W., Riggs, B.L. Measurement of bone mineral content in human vertebrae and hip by dual photon absorptiometry. Radiology 1980, 136, 485–487.

    PubMed  CAS  Google Scholar 

  31. Gotfredsen, A., Pødenphant, J., Nørgaard, H., Nilas, L., Nielsen, V.A.H., Christiansen, C. Accuracy of lumbar spine bone mineral content by dual photon absorptiometry. J Nucl Med 1988, 29, 248–254.

    PubMed  CAS  Google Scholar 

  32. Gotfredsen, A., Borg, J., Christiansen, C., Mazess, R.B. Total body bone mineral in vivo by dual photon absorptiometry. II. Accuracy. Clin Phys 1984, 4, 357–362.

    Article  CAS  Google Scholar 

  33. Alhava, E.M., Kettunen, K., Karjalainen, P. Bone mineral in patients with osteoarthrosis of the hip. Acta Orthop Scand 1975, 46, 709–715.

    Article  PubMed  CAS  Google Scholar 

  34. Roh, Y.S., Dequeker, J., Mulier, J.C. Bone mass in osteoarthrosis measured in vivo by photon absorptiometry. J Bone Joint Surg 1974, 56A, 587–591.

    Google Scholar 

  35. Carlsson, A., Nilsson, B.E., Westlin, N.E. Bone mass in primary coxarthrosis. Acta Orthop Scand 1979, 50, 187–189.

    Article  PubMed  CAS  Google Scholar 

  36. Dalen, N., Hallberg, D., Lamke, B. Bone mass in obese subjects. Acta Med Scand 1975, 197, 353–355.

    Article  PubMed  CAS  Google Scholar 

  37. Westlin, N.E. Loss of bone mineral after Colles' fracture. Clin Orthop Rel Res 1974, 20, 194–199.

    Google Scholar 

  38. Doyle, F., Brown, J., Lachance, C. Relation between bone mass and muscle weight. Lancet 1970, i, 391–393.

    Article  Google Scholar 

  39. Jacobsen, P.C., Beaver, W., Grubb, S.A., Taft, T.N., Talmage, R.V. Bone density in women: College athletes and older athletic women. J Orthop Res 1984, 2, 328–332.

    Article  PubMed  Google Scholar 

  40. Gotfredsen, A., Nilas, L., Riis, B.J., Thomsen, K., Christiansen, C. Bone changes occurring spontaneously and caused by oestrogen in early postmenopausal women: A local or generalised phenomenon. Br Med J 1986, 292, 1098–1100.

    Article  CAS  Google Scholar 

  41. Aloia, J.F., Vaswani, A., Ellis, K., Yuen, K., Cohn, S.H. A model for involutional bone loss. J Lab Clin Med 1985, 106, 630–637.

    PubMed  CAS  Google Scholar 

  42. Nordin, B.E.C., Wishart, J.M., Horowitz, M., Need, A.G., Bridges, A., Bellon, M. The relation between forearm and vertebral mineral density and fractures in postmenopausal women. Bone Mineral 1988, 5, 21–23.

    Article  CAS  Google Scholar 

  43. Mazess, R.B., Peppler, W., Chesney, R.W., Lange, T.A., Lindgren, U., Smith, E.Jr. Total body and regional bone mineral by dual-photon absortiometry in metabolic bone disease. Calcif Tissue Int 1984, 36, 8–13.

    Article  PubMed  CAS  Google Scholar 

  44. Mazess, R.B., Barden, H.S., Ettinger, M. Radial and spinal bone mineral density in a patient population. Arthritis Rheum 1988, 31, 891–897.

    Article  PubMed  CAS  Google Scholar 

  45. Geusens, P., Dequeker, J., Verstraeten, A., Nijs, J. Age, sex, and menopause-related changes of vertebral and peripheral bone: population study using dual and single photon absorptiometry and radiogrammetry. J Nucl Med 1986, 27, 1540–1549.

    PubMed  CAS  Google Scholar 

  46. Hui, S.L., Slemenda, C.W., Johnston, C.C., Appledorn, C.R. Effects of age and menopause on vertebral bone density. Bone Mineral 1987, 2, 141–146.

    CAS  Google Scholar 

  47. Mazess, R.B., Barden, H.S., Ettinger, M., Johnston, C., Dawson-Hughes, B., Baran, D., Powell, M., Notelovitz, M. Spine and femur density using dual-photon absorptiometry in US white women. Bone Mineral 1987, 2, 211–219.

    CAS  Google Scholar 

  48. Nilas, L., Christiansen, C. Rates of bone loss in normal women: evidence of accelerated trabecular bone loss after the menopause. Eur J Clin Invest 1988, 18, 529–534.

    Article  PubMed  CAS  Google Scholar 

  49. Gotfredsen, A., Nilas, L., Pødenphant, J., Hadberg, A., Christiansen, C. Regional bone mineral in healthy and osteoporotic women. A cross sectional study. Scand J Clin Lab Invest 1989, 49, 739–749.

    Article  PubMed  CAS  Google Scholar 

  50. Mazess, R.B., Barden, H., Ettinger, M., Schultz, E. Bone density of the radius, spine, and proximal femur in osteoporosis. J Bone Min Res 1988, 3, 13–18.

    CAS  Google Scholar 

  51. Dunn, W.L., Kan, S.H., Wahner, H.W. Errors in longitudinal measurements of bone mineral: effect of source strength in single and dual photon absorptiometry. J Nucl Med 1987, 28, 1751–1757.

    PubMed  CAS  Google Scholar 

  52. Lindsay, R., Fey, C., Haboubi A. Dual photon absorptiometric measurements of bone mineral density increase with source life. Calcif Tissue Int 1987, 41, 293–294.

    Article  PubMed  CAS  Google Scholar 

  53. Nilas, L., Hassager, C., Christiansen, C. Long-term precision of dual photon absorptiometry in the lumbar spine. Bone Mineral 1988, 3, 305–315.

    Article  CAS  Google Scholar 

  54. Nottesatd, S.Y., Baumel, J.J., Kimmel, D.B., Recker, R.R., Heaney, R.P. The proportion of trabecular bone in human vertebrae. J Bone Min Res 1987, 2, 221–229.

    Article  Google Scholar 

  55. Armitage, P. Statistical Methods in Medical Research. Blackwell Scientific Publications, Oxford, 1971.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gotfredsen, A., Riis, B.J., Christiansen, C. et al. Does a single local absorptiometric bone measurement indicate the overall skeletal status? Implications for osteoporosis and osteoarthritis of the hip. Clin Rheumatol 9, 193–203 (1990). https://doi.org/10.1007/BF02031968

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02031968

Key words

Navigation