Skip to main content
Log in

The biology of mammary transgenes: Five rules

  • Published:
Journal of Mammary Gland Biology and Neoplasia Aims and scope Submit manuscript

Abstract

The development of hyperplasias, dysplasias, and mammary tumors has been studied extensively in transgenic mice. It is now becoming clear that transgenes activate and participate in oncogenic pathways that govern the events surrounding neoplastic progression in transgenic mice. The oncogenic pathways control mammary growth, development, and neoplastic progression. Some of the key features of transgenic biology can be expressed in the following rules: (1) Mammary development is related to the type and amount of transgene expressed; (2) dysplasias and tumors develop from secondary mutations; (3) the transgenes determine tumor phenotype; (4) transgenes may activate dominant oncogenic pathways; and (5) the oncogenic pathway determines prognosis. The study of the comparative pathology of mammary tumorigenesis in many strains of transgenic mice provides examples of these principles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. J. M. Adams and S. Cory (1991). Transgenic models of tumor development.Science 2541161–1167.

    PubMed  Google Scholar 

  2. R. B. Dickson, M. M. Gottardis, and G. T. Merlino (1991). Molecular insights into breast cancer from transgenic mouse models.Bioessays 13591–593.

    Article  PubMed  Google Scholar 

  3. W. J. Muller (1991). Expression of activated oncogenes in the murine mammary gland: Transgenic models for human breast cancer.Cancer Metastasis Rev. 10217–227.

    Article  PubMed  Google Scholar 

  4. R. D. Cardiff, D. Ornitz, F. Lee, R. Moreadith, E. Sinn, W. Muller, and P. Leder (1992). Mammary morphogenesis and oncogenes. In L. Dogliotti, A. Sapino, and G. Bussolati (eds),Breast Cancer: Progress in Biology, Clinical Management and Prevention, Kluwer, Boston, pp. 41–55.

    Google Scholar 

  5. R. D. Cardiff and W. J. Muller (1993). Transgenic mouse models of mammary tumorigenesis.Cancer Surv. 1697–137.

    PubMed  Google Scholar 

  6. M. A. Webster and W. J. Muller (1994). Mammary tumorigenesis and metastasis in transgenic mice.Semin. Cancer Biol. 569–76.

    PubMed  Google Scholar 

  7. R. Callahan and G. Campbell (1989). Mutations in human breast cancer: An overview.J. Natl. Cancer Inst. 811780–1786.

    PubMed  Google Scholar 

  8. P. K. Pattengale, T. Stewart, A. Leder, E. Sinn, W. Muller, I. Tepler, E. Schmidt, and P. Leder (1989). Animal models of human disease: Pathology and molecular biology of spontaneous neoplasms occurring in transgenic mice carrying and expressing activated cellular oncogenes.Am. J. Pathol. 13539–61.

    PubMed  Google Scholar 

  9. A. C. Andres, B. Schonenberger, B. Groner, L. Henninghausen, M. Le Meur, and P. Gerlinger (1987). Ha-ras oncogene expression directly by a milk protein gene promoter: Tissue specificity, hormonal regulation, and tumor induction in transgenic mice.Proc. Natl. Acad. Sci. USA 841299–1303.

    PubMed  Google Scholar 

  10. C. A. Schonenberger, C. Andres, B. Groner, M. A. van der Valk, M. LeMeur, and P. Gerlinger (1988). Targeted c-myc gene expression in mammary glands of transgenic mice induces mammary tumors with constitutive milk protein gene transcription.EMBO J. 7169–175.

    PubMed  Google Scholar 

  11. J. Tornell, B. Carlsson, P. Pohjanen, H. Wennbo, L. Ryno, and O. Isaksson (1992). High frequency of mammary adenocarcinomas in metallothionein promoter-human growth hormone transgenic mice created from two different strains of mice.J. Steroid Biochem. Mol. Biol. 43237–242.

    Article  PubMed  Google Scholar 

  12. R. D. Cardiff, A. Leder, A. Kuo, P. Pattengale, and P. Leder (1993). Multiple tumor types appear in a transgenic mouse with theras oncogene.Am. J. Pathol. 1421199–1207.

    PubMed  Google Scholar 

  13. I. G. Maroulakou, M. Anver, L. Garrett, and J. E. Green (1994). Prostate and mammary adenocarcinoma in transgenic mice carrying a rat C3(1) simian virus 40 large tumor antigen fusion gene.Proc. Natl. Acad. Sci. USA 9111236–11240.

    PubMed  Google Scholar 

  14. E. Sinn, W. J. Muller, P. K. Pattengale, I. Tepler, R. Wallace, and P. Leder (1987). Coexpression of MMTV/v-Ha-ras and MMTV/c-myc genes in transgenic mice: Synergistic action of oncogenesin vivo.Cell 49465–495.

    Article  PubMed  Google Scholar 

  15. P. J. Tremblay, F. Pothier, T. Hoang, G. Tremblay, S. Brownstein, A. Liszauer, and P. Jolicoeur (1988). Transgenic mice carrying the mouse mammary tumor virusras fusion gene: Distinct effects in various tissues.Mol. Cell Biol. 9854–859.

    Google Scholar 

  16. A. C. Andres, M. A. Van der Walk, C. A. Schonenberger, F. Fluckiger, M. LeMeur, P. Gerlinger, and B. Groner. (1988). Ha-ras and c-myc oncogene expression interferes with morphological and functional differentiation of mammary epithelial cells in single and double transgenic mice.Genes Dev. 21486–1495.

    PubMed  Google Scholar 

  17. L. L. Nielsen, C. M. Discafani, M. Gurnani, and R. D. Tyler (1991). Histopathology of salivary and mammary gland tumors in transgenic mice expressing a human Ha-ras oncogene.Cancer Res. 513762–3767.

    PubMed  Google Scholar 

  18. M. Gossen and H. Fujard (1992). Tight control of gene expression in mammalian cells by tetracycline-responsive promoters.Proc. Natl. Acad. Sci USA 895547–5551.

    PubMed  Google Scholar 

  19. D. M. Ornitz, R. W. Moreadith, and P. Leder (1991). Binary system for regulating transgene expression in mice: Targetingint-2 expression with yeast GAL4/UAS control elements.Proc. Natl. Acad. Sci. USA 88698–702.

    PubMed  Google Scholar 

  20. M. Barinaga (1994). Knockout mice: Round two.Science 26526–28.

  21. J. G. Pichel, J. Lakso, and H. Westphal (1993). Timing of SV40 oncogene activation by site-specific recombination determines subsequent tumor progression during murine lens development.Oncogene 83333–3342.

    PubMed  Google Scholar 

  22. H. Kwan, V. Pecenka, A. Tsukamoto, T. G. Parslow, R. Guzman, T. P. Lin, W. J. Muller, F. S. Lee, P. Leder, and H. E. Varmus (1992). Transgenes expressing theWnt-1 andint-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice.Mol. Cell Biol. 12147–154.

    PubMed  Google Scholar 

  23. G. H. Smith, T. Mehrel, and D. R. Roop (1990). Differential keratin gene expression in developing, differentiating, preneoplastic, and neoplastic mouse mammary epithelium.Cell Growth Differ. 1161–170.

    PubMed  Google Scholar 

  24. W. J. Muller, E. Sinn, P. K. Pattengale, R. Wallace, and P. Leder (1988). Single step induction of mammary adenocarcinoma in transgenic mice bearing the activated c-neu oncogene.Cell 54105–115.

    Article  PubMed  Google Scholar 

  25. Y. Matsui, S. A. Halter, J. T. Holt, B. L. Hogan, and R. J. Coffey (1990). Development of mammary hyperplasia and neoplasia in MMTV-TGF alpha transgenic mice.Cell 611147–1155.

    Article  PubMed  Google Scholar 

  26. S. A. Halter, P. Dempsey, Y. Matsui, M. K. Stokes, R. Graves-Deal, B. L. Hogan, and R. J. Coffey (1992). Distinctive patterns of hyperplasia in transgenic mice with mouse mammary tumor virus transforming growth factor-α. Characterization of mammary gland and skin proliferations.Am. J. Pathol. 1491131–1146.

    Google Scholar 

  27. D. M. Ornitz, R. D. Cardiff, A. Kuo, and P. Leder (1992).Int-2, an autocrine and/or ultra-short-range effector in transgenic mammary tissue transplants.J. Natl. Cancer. Inst. 84887–892.

    PubMed  Google Scholar 

  28. C. T. Guy, M. A. Webster, M. Schaller, T. J. Parsons, R. D. Cardiff, and W. J. Muller (1992). Expression of the c-neu proto-oncogene in the mammary epithelium of transgenic mice induces metastatic disease.Proc. Natl. Acad. Sci. USA 8910578–10582.

    PubMed  Google Scholar 

  29. P. M. Siegel, D. L. Dankort, W. R. Hardy, and W. J. Muller (1994). Novel activating mutations in theneu proto-oncogene involved in induction of mammary tumors.Mol. Cell. Biol. 147068–7077.

    PubMed  Google Scholar 

  30. D. W. Morris and R. D. Cardiff (1987). The multistep model of mouse mammary tumor development.Adv. Viral Oncol. 7123–140.

    Google Scholar 

  31. R. D. Cardiff (1984) Protoneoplasia: The molecular biology of mouse mammary hyperplasia.Adv. Cancer Res. 42167–190.

    PubMed  Google Scholar 

  32. D. Medina. (1982). Mammary tumors. In S. L. Foster, J. D. Small, and J. G. Fox (eds.),The Mouse in Biomedical Research, Academic Press, New York, pp. 373–396.

    Google Scholar 

  33. T. C. Wang, R. D. Cardiff, L. Zuckerberg, E. Lees, A. Arnold, and E. V. Schmidt (1994). Mammary hyperplasia and carcinoma in MMTV-cyclin D1 transgenic mice.Nature 369669–671.

    Article  PubMed  Google Scholar 

  34. R. D. Cardiff, E. Sinn, W. Muller, and P. Leder (1991). Transgenic oncogene mice: Tumor phenotype predicts genotype.Am. J. Pathol. 139495–501.

    PubMed  Google Scholar 

  35. T. P. Lin, R. C. Guzman, R. C. Osborn, G. Thordarson, and S. Nadi (1992). Role of endocrine, autocrine, and paracrine interactions in the development of mammary hyperplasia inWnt-1 transgenic mice.Cancer Res. 524413–4419.

    PubMed  Google Scholar 

  36. C. Jhappan, D. Gallahan, C. Stahle, E. Chu, G. H. Smith, G. Merlino, and R. Callahan (1992). Expression of an activatedNotch-relatedint-3 transgene interferes with cell differentiation and induces neoplastic transformation in mammary and salivary glands.Genes Dev. 6345–355.

    PubMed  Google Scholar 

  37. D. F. Pierce, Jr., M. D. Johnson, Y. Matsui, S. D. Robinson, L. I. Gold, A. F. Purchio, C. W. Daniel, B. L. Hogan, and H. L. Moses (1993). Inhibition of mammary duct development but not alveolar outgrowth during pregnancy in transgenic mice expressing active TGF-beta 1.Genes 72308–2317.

    PubMed  Google Scholar 

  38. S. Sakai, M. Mizuno, T. Harigaya, K. Yamamoto, T. Mori, R. J. Coffey, and H. Nagasawa (1994). Cause of failure of lactation in mouse mammary tumor virus/human transforming growth factor alpha transgenic mice.Proc. Soc. Exp. Biol. Med. 205236–242.

    PubMed  Google Scholar 

  39. L. Hennighausen, R. McKnight, T. Burdon, M. Baik, R. J. Wall, and G. H. Smith (1994). Whey acidic protein extrinsically expressed from the mouse mammary tumor virus long terminal repeat results in hyperplasia of the coagulation gland epithelium and impaired mammary development.Cell Growth Differ.5607–613.

    PubMed  Google Scholar 

  40. C. T. Guy, R. D. Cardiff, and W. J. Muller (1992). Induction of metastatic mammary tumors by expression of polyomavirus middle T oncogene: A transgenic mouse model for metastatic disease.Mol. Cell. Biol. 12954–961.

    PubMed  Google Scholar 

  41. R. Mangues, I. Seidman, J. W. Gordon, and A. Pellicer (1992). Overexpression of the N-ras proto-oncogene, not somatic mutational activation, associated with malignant tumors in transgenic mice.Oncogene 72073–2076.

    PubMed  Google Scholar 

  42. L. A. Donehower, M. Harvey, B. L. Slagle, M. J. McArthur, C. A. Montgomery, Jr., J. S. Butel, and A. Bradley (1992). Mice deficient for p53 are developmentally normal but susceptible to spontaneous tumours.Nature 356215–221.

    Article  PubMed  Google Scholar 

  43. T. Jacks, J. Remington, B. O. Williams, E. M. Schmitt, S. Halachi, R. T. Bronson, and R. A. Weinberg (1994). Tumor spectrum analysis in p53 mutant mice.Curr. Biol. 41–7.

    Article  PubMed  Google Scholar 

  44. S. K. Muthuswamy, P. M. Siegel, D. L. Dankort, M. A. Webster, and W. J. Muller (1994). Mammary tumors expressing theneu proto-oncogene possess elevated c-Src tyrosine kinase activity.Mol. Cell. Biol. 14735–743.

    PubMed  Google Scholar 

  45. M. S. Trimble, J. H. Xin, C. T. Guy, W. J. Muller, and J. A. Hassell (1993). PEA3 is overexpressed in mouse metastatic mammary adenocarcinomas.Oncogene 83037–3042.

    PubMed  Google Scholar 

  46. C. J. Sympson, R. S. Talhouk, C. M. Alexander, J. R. Chin, S. M. Clift, M. J. Bissell, and Z. Werb (1994). Targeted expression of stromelysin-1 in mammary gland provides evidence for a role of proteinases in branching morphogenesis and the requirement for an intact basement membrane for tissue-specific gene expression.J. Cell Biol. 125681–693.

    Article  PubMed  Google Scholar 

  47. R. J. Coffey, K. S. Meise, Y. Matsui, B. C. Hogan, P. J. Dempsey, and S. A. Halter (1993). Acceleration of mammary neoplasia in transforming growth factor alpha transgenic mice by 7,12 dimethyl-benzanthracene.Cancer Res. 541678–1683.

    Google Scholar 

  48. R. D. Cardiff and R. J. Munn (1995). Comparative pathology of mammary tumorigenesis in transgenic mice.Cancer Surv. (in press).

  49. H. Kwan, V. Pecenka, A. Tsukamoto, T. G. Parslow, R. Guzman, T. P. Lin, W. J. Muller, F. S. Lee, P. Leder, and H. E. Varmus (1992). Transgenes expressing theWnt-1 andint-2 proto-oncogenes cooperate during mammary carcinogenesis in doubly transgenic mice.Mol. Cell. Biol. 12147–154.

    PubMed  Google Scholar 

  50. T. Hunter (1991). Cooperation between oncogenes.Cell 64249–270.

    Article  PubMed  Google Scholar 

  51. G. M. Shackleford, C. A. MacArthur, H. C. Kwan, and H. E. Varmus (1993). Mouse mammary tumor virus infection accelerates mammary carcinogenesis inWnt-1 transgenic mice by insertional activation ofint-2/Fgf-3 andhst/Fgf-4.Proc. Natl. Acad. Sci. USA 90740–744.

    PubMed  Google Scholar 

  52. C. T. Guy, S. K. Muthuswamy, P. Soriano, R. D. Cardiff, and W. J. Muller (1994). Activation of c-src tyrosine kinase is required for the induction of mammary tumors in transgenic mice.Genes Dev. 823–32.

    PubMed  Google Scholar 

  53. L. Bouchard, L. Lamarre, P. J. Tremblay, and P. Jolicoeur (1989). Stochastic appearance of mammary tumors in transgenic mice carrying the activated c-neu oncogene.Cell 57931–936.

    Article  PubMed  Google Scholar 

  54. S. A. Courtneidge and A. E. Smith (1983). Polyoma virus transforming protein associates with the product of the c-src cellular gene.Nature 303435–439.

    Article  PubMed  Google Scholar 

  55. W. J. Gullick, S. B. Love, C. Wright, D. M. Barnes, B. Gusterson, A. L. Harris, and D. G. Altman (1991). c-erbB-2 protein overexpression in breast cancer is a risk factor in patients with involved and uninvolved lymph nodes.Bri. J. Cancer 63434–438.

    Google Scholar 

  56. M. C. Paterson, K. D. Dietrich, J. Danyluk, A. H. Paterson, A. W. Lees, N. Jamil, J. Hanson, H. Jenkins, B. E. Krause, and W. A. McBlain (1991). Correlation between c-erbB2 amplification and risk of recurrent disease in node-negative breast cancer.Cancer Res. 51556–567.

    PubMed  Google Scholar 

  57. D. J. Slamon, G. M. Clark, S. G. Wong, W. J. Levin, A. Ullrich, and W. L. McGuire (1987). Human breast cancer: Correlation of relapse and survival with amplification of HER-2/neu oncogene.Science 235177–182.

    PubMed  Google Scholar 

  58. R. Montesano, M. S. Pepper, U. Mohle-Steinlein, W. Risau, E. F. Wagner, and L. Orci (1990). Increased proteolytic activity is responsible for aberrant morphogenetic behaviour of endothelial cells expressing the middle T oncogene.Cell 62436–445.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Cardiff, R.D. The biology of mammary transgenes: Five rules. J Mammary Gland Biol Neoplasia 1, 61–73 (1996). https://doi.org/10.1007/BF02096303

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02096303

Key words

Navigation