Skip to main content
Log in

Introduction to TNF and related lymphokines

  • Published:
Biotherapy

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Carswell EA, Old LJ, Kassel RL, Green S, Fiore N, Williamson B. An endotoxin induced serum factor which causes necrosis of tumors. Proc Natl Acad Sci USA 1975; 72: 3666–70.

    PubMed  Google Scholar 

  2. Flick DA, Gifford GE. Tumor necrosis factor. In: Torrence P, ed. Biological response modifiers, Bethesda, Maryland: National Institutes of Health, 1985: 171–218.

    Google Scholar 

  3. Sugarman BJ, Aggarwal BB, Hass PE, Figari IS, Palladino MA Jr, Shepard HM. Recombinant human tumor necrosis factor-α: effects on proliferation of normal and transformed cellsin vitro. Science (Walsh DC) 1985; 230: 943–5.

    Google Scholar 

  4. Granger GA, Williams TW. Lymphocyte toxicityin vitro: activation and release of a cytotoxic factor. Nature (Lond) 1968; 218: 1253.

    Google Scholar 

  5. Dinarello CA. Biology of interleukin 1. FASEB J 1988; 2: 108–15.

    PubMed  Google Scholar 

  6. Ruff MR, Gifford GE. Tumor necrosis factor. In: Pick E, ed. Lymphokines, Vol 2. New York, Academic Press, 1981; 235–73.

    Google Scholar 

  7. Gifford GE, Flick DA. The natural production and release of TNF. In: Tumour necrosis factor and related cytotoxins. Edited by Gregory Bock, John Wiley and Sons, Chichester. Ciba Foundation Symposium No. 131, 1987: 3–20.

    Google Scholar 

  8. Goeddel DV, Aggarwal BB, Gray PW, Leung DW, Nedwin GE, Palladino MA, Patton JS, Permica D, Shepard HM, Sugarman BJ, Wong GHW. Tumor necrosis factor: gene structure and biological activities. Cold Spring Harbor Symp Quant Biol 1986; 51: 597.

    PubMed  Google Scholar 

  9. Beutler B, Cerami A. Cachectin: more than a tumor necrosis factor. N Engl J Med 1987; 316: 379–85.

    PubMed  Google Scholar 

  10. Beutler B, Cerami A. Tumor necrosis, cachexia, shock, and inflammation: a common mediator. Ann Rev Biochem 1988; 57: 505–18.

    PubMed  Google Scholar 

  11. Old LJ. Tumor necrosis factor. Scientific American 1988; 258(5): 59–75.

    PubMed  Google Scholar 

  12. Nauts HC, Fowler GA, Bogatko FH. A review of the influence of bacterial infection and of bacterial products (Coley's toxins) on malignant tumors in man. Acta Medical Scan Suppl 1953; 275: 5–103.

    Google Scholar 

  13. Pearl R. Cancer and tuberculosis. Am J Hyg 1929; 9: 97–159.

    Google Scholar 

  14. Gratia A, Linz R. La phenomene de Shwartzman dans le sarcome de cobaye. Compt Rend Soc de Biol 1931; 108: 421–8.

    Google Scholar 

  15. Shwartzman G, Michailovsky N. Phenomenon of local skin reactivity to bacterial filtrates in the treatment of mouse sarcoma. Proc Soc Exp Biol and Med 1936; 34: 323–5.

    Google Scholar 

  16. Shear MJ, Andervont HB. Chemical treatment of tumors. III. Separation of hemorrhage-producing fraction ofB. coli filtrate. Proc Soc Exp Biol and Med 1936; 34: 325–36.

    Google Scholar 

  17. Shear MJ, Turner FC. Chemical treatment of tumors. V. Isolation of the hemorrhage producing factor fromSerratia marcescens (Bacillus prodigiosus) culture filtrate. J Nat Canc Inst 1943; 4: 81–97.

    Google Scholar 

  18. Shear MJ. Chemical treatment of tumors. IX. Reactions of mice with primary subcutaneous tumors to injection of a hemorrhage producing polysaccharide. J Nat Canc Inst 1944; 4: 461–76.

    Google Scholar 

  19. Old LJ, Clark DA, Benacerraf B. Effect of Bacillus Calmette-Guérn infection on transplanted tumours in the mouse. Nature (Lond) 1959; 184: 291–2.

    Google Scholar 

  20. Ribi EE, Granger DL, Milner KC, Strain SM. Tumor regression caused by endotoxins and mycobacterial factors. J Nat Canc Inst 1975; 55: 1253–7.

    Google Scholar 

  21. O'Malley WE, Achinstein B, Shear MJ. Action of bacterial polysaccharide on tumors. II. Damage of sarcoma 37 by serum of mice treated withSerratia marcescens polysaccharide and induced tolerance. J Natl Canc Inst 1962; 29: 1169–75.

    Google Scholar 

  22. Flick DA, Gifford GE. Production of tumor necrosis factor in umprimed mice; mechanism of endotoxin mediated tumor necrosis. Immunobiology 1986; 171: 320–8.

    PubMed  Google Scholar 

  23. Suter E, Kirsanow EM. Hyperactivity to endotoxin in mice injected with mycobacteria. Induction and elicitation of the reaction. Immunology 1961; 4: 345–65.

    Google Scholar 

  24. Rouzer CA, Cerami A. Hypertriglyceridemia associated withTrypanosoma brucei brucei infection in rabbits: role of defective triglyceride removal. Mol Biochem Parasitol 1980; 2: 31–8.

    PubMed  Google Scholar 

  25. Beutler B, Mahoney J, Le Trang N, Pekala P, Cerami A. Purification of cachectin, a lipoprotein lipase suppressing hormone secreted by endotoxin induced RAW 264.7 cells. J Exp Med 1985; 161: 984–95.

    PubMed  Google Scholar 

  26. Beutler B, Cerami A. Cachectin and tumour necrosis factor as two sides of the same biological coin. Nature (Lond) 1986; 320: 584–8.

    Google Scholar 

  27. Pennica D, Goeddel DV. Cloning and characterization of the genes for human and murine tumor necrosis factors. Lymphokines 1987; 13: 163–80.

    Google Scholar 

  28. Rosenaw W, Moon HD. Lysis of homologous cells by sensitized lymphocytes in tissue culture. J Natl Canc Inst 1961; 27: 471–83.

    Google Scholar 

  29. Gray PW. Molecular characterization of human lymphotoxin. Lymphokines 1987; 13: 199–208.

    Google Scholar 

  30. Gery T, Gershon RK, Waksman BH. Potentiation of the T lymphocyte response to mitogens. I. The responding cell. J Exper Med 1972; 136: 128–52.

    Google Scholar 

  31. Lomedico PT, Gubler U, Mizel SB. Cloning and expression of murine, human and rabbit interleukin 1 genes. Lymphokines 1987; 13: 139–50.

    Google Scholar 

  32. Männel DN, Falk W, Meltzer MS. Inhibition of nonspecific tumoricidal activity by activated macrophages with antiserum against a soluble cytotoxic factor. Infect Immun 1981; 33: 156–64.

    PubMed  Google Scholar 

  33. Rubin BY, Anderson SL, Sullivan A, Williamson BD, Carswell EA, Old LJ. Nonhematopoietic cells selected for resistance to tumor necrosis factor produce tumor necrosis factor. J Exp Med 1986; 164: 1350–5.

    PubMed  Google Scholar 

  34. Spriggs D, Imamura K, Rodriguez C, Horiguchi J, Kufe DW. Induction of tumor necrosis factor expression and resistance in a human breast tumor cell line. Proc Nat] Acad Sci USA 1987; 84: 6563–6.

    Google Scholar 

  35. McGrath KM, Levesgue MC, Ruddle NH. Lymphotoxin and tumor necrosis factor: expression and function in cytolytic cells. In: Kaplan J, Green D, Bleackley C, (eds). Cellular basis of immune modulation. Proc Leukocyte Biol, New York, 1989: 299–303.

  36. Picot S, Peyron F, Vuillez J-P, Barbe G, Marsh K, Ambroise-Thomas P. Tumor necrosis factor production by human macrophage stimulatedin vitro byPlasmodium falciparum. Inf and Immun 1990; 58: 214–16.

    Google Scholar 

  37. Kildahl-Andersen O, Nissen-Meyer J. Production and characterization of cytostatic protein factors released from human monocytes during exposure to lipopolysaccharide and muramyl dipeptide. Cell Immunol 1985; 93: 375–86.

    PubMed  Google Scholar 

  38. Yamamoto A, Usami H, Nagamoto M et al. The use of lipoteichoic acid (LTA) forStreptococcus pyogenes to induce a serum factor causing tumor necrosis. Br J Canc 1985; 51: 739–42.

    Google Scholar 

  39. Aderka D, Holtmann H, Toker L, Hahr T, Wallach D. Tumor necrosis factor induction by Sendai virus. J Immunol 1986; 136: 2938–42.

    PubMed  Google Scholar 

  40. Berendt SL, Torezynski RM, Bollon AP. Sendai virus induces high level of tumor necrosis factor mRNA in human peripheral blood leukocytes. Nucl Acids Res 1986; 14: 8997–9013.

    PubMed  Google Scholar 

  41. Jänicke R, Männel DN. Distinct tumor cell membrane constituents activate human monocytes for tumor necrosis factor synthesis. J Immunol 1990; 144: 1144–150.

    PubMed  Google Scholar 

  42. Luettig B, Steinmüller C, Gifford GE, Wagner H, Lohmann-Matthes M-L. Macrophage activation by the polysaccharide arabinogalactan isolated from plant cells cultures of Echinacea purpurea. J Nat Canc Institute 1989; 81: 669–75.

    Google Scholar 

  43. Philip R, Epstein LB. Tumor necrosis factor as immunomodulator and mediator of monocyte cytotoxicity induced by itself,γ-interferon and interleukin-1. Nature 1986; 323: 86–9.

    PubMed  Google Scholar 

  44. Gifford GE, Lohmann-Matthes ML. Gamma interferon priming of mouse and human macrophages for induction of tumor necrosis factor production by bacterial lipopolysaccharide. J Nat Canc Inst 1987; 78: 121–4.

    Google Scholar 

  45. Gifford GE, Lohmann-Matthes ML. The requirement for the continual presence of lipopolysaccharide for production of tumor necrosis factor by thioglycolate induced peritoneal murine macrophages. Int J Canc 1986; 38: 135–7.

    Google Scholar 

  46. Beutler B, Krochin N, Milsark IW, Luedke C, Cerami A. Control of cachectin (tumor necrosis factor) synthesis: mechanism of endotoxin resistance. Science (Wash DC) 1986; 232: 977–80.

    Google Scholar 

  47. Collart MA, Belin D, Vassalli J-D, deKossodo S, Vassalli P.γ-Interferon enhances macrophage transcription of the tumor necrosis factor/cachectin, interleukin 1, and urokinase genes, which are controlled by short-lived repressors. J Exp Med 1986; 164: 2113–8.

    PubMed  Google Scholar 

  48. Kunkel LS, Spengler M, May MA, Spengler R, Larrick J, Remick D. Prostaglandin E2 regulates macrophagederived tumor necrosis factor gene expression. J Biol Chem 1988; 263: 5380–4.

    PubMed  Google Scholar 

  49. Last-Barney K, Homon CA, Faanes RB, Merluzz VJ. Synergistic and overlapping activities of tumor necrosis factor-α and IL-1. J Immunol 1988; 141: 527–30.

    PubMed  Google Scholar 

  50. Satomi N, Haranaka 4K, Kunii O. Research on the production site of tumor necrosis factor (TNF) Jpn J Exp Med 1981; 51: 317–22.

    PubMed  Google Scholar 

  51. Beutler BA, Milsark IW, Cerami A. Cachectin/tumor necrosis factor: production, distribution, and metabolic fatein vivo. J Immunol 1985; 135: 3972–7.

    PubMed  Google Scholar 

  52. Gifford GE, Loewenstein J, Yamin A, Gallily R. Macrophage-mediated killing of tumor cells. Correlation of the3H-thymidine release assay with the production of macrophage-derived cytolytic factor and the preliminary characterization of the factor inhibiting its production. Int J Canc 1986; 37: 73–9.

    Google Scholar 

  53. Gallily R, Gifford GE, Loewenstein J. Suppression of both macrophage-mediated tumor cell lysis and cytolytic factor production by a factor (CIF) derived from normal embryonic fibroblasts. Cancer Immunol Immunother 1986; 23: 60–6.

    PubMed  Google Scholar 

  54. Gifford GE, Loewenstein J, Gallily R. Production of a factor (CIF) from normal fibroblast cells inhibiting TNF/ Cachectin production. Proc Soc Exp Biol and Med 1989; 191: 391–5.

    Google Scholar 

  55. Espevic T, Figavi IS, Shalaby MR, Lacideo GA, Lewis GD, Shepard HM, Palladino Jr MA. Inhibition of cytokine production by cyclosporin and transforming growth factorβ. J Exper Med 1987; 166: 571–6.

    Google Scholar 

  56. Helfgott DC, May LT, Sthoeger Z, Tamm I, Sehgal PB. Bacterial lipopolysaccharide (endotoxin) enhances expression and secretion ofβ 2 interferon by human fibroblasts. J Exper Med 1987; 166: 1300–9.

    Google Scholar 

  57. Aderka D, Junming LE, Vilcek J. IL-6 inhibits lipopolysaccharide-induced tumor necrosis factor production in cultural human monocytes, U937 cells, and in mice. J Immunol 1989; 143: 3517–22.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Gifford, G.E., Duckworth, D.H. Introduction to TNF and related lymphokines. Biotherapy 3, 103–111 (1991). https://doi.org/10.1007/BF02172082

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02172082

Key words

Navigation