Skip to main content
Log in

Regulation of equine infectious anemia virus expression

  • Review
  • Published:
Journal of Biomedical Science

Abstract

Equine infectious anemia virus (EIAV) is an ungulate lentivirus that is related to human immunodeficiency virus (HIV). Much of the understanding of lentiviral gene regulation comes from studies using HIV. HIV studies have provided insights into molecular regulation of EIAV expression; however, much of the regulation of EIAV expression stands in stark contrast to that of HIV. This review provides an overview of the current state of knowledge of EIAV regulation by comparing and contrasting EIAV gene regulation to HIV. The role of EIAV gene regulation is discussed in relation to EIAV pathogenesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alexandersen S, Carpenter S. Characterization of variable regions in the envelope and S3 open reading frame of equine infectious anemia virus. J Virol 65:4255–4262;1991.

    Google Scholar 

  2. Alonso A, Derse D, Peterlin BM. Human chromosome 12 is required for optimal interactions between Tat and TAR of human immunodeficiency virus type 1 in rodent cells. J Virol 66:4617–4621;1992.

    Google Scholar 

  3. Arya SK, Guo C, Josephs SF, Wong-Staal F.Trans-activator gene of human T-lymphotropic virus type III (HTLV-III). Science 229:69–73;1985.

    Google Scholar 

  4. Ball JM, Payne SL, Issel CJ, Montelaro RC. EIAV genomic organization: Further characterization by sequencing of purified glycoproteins and cDNA. Virology 165:601–605;1988.

    Google Scholar 

  5. Bayer P, Kraft M, Ejchart A, Westendorp M, Frank R, Rosch P. Structural studies of HIV-1 Tat protein. J Mol Biol 247:529–535;1995.

    Google Scholar 

  6. Beisel CE, Edwards JF, Dunn LL, Rice NR. Analysis of multiple mRNAs from pathogenic equine infectious anemia virus (EIAV) in an acutely infected horse reveals a novel protein, Ttm, derived from the carboxy terminus of the EIAV transmembrane protein. J Virol 67:832–842;1993.

    Google Scholar 

  7. Belsham M, Shoemaker AE, Baccam P, Harris ME, Hope TJ, Schommer S, Smith TA, Cornette J, Carpenter S. Biological characterization of Rev variation in equine infectious anemia virus, submitted 1997.

  8. Benton CV, Brown BL, Harsham JS, Gilden RV. In vitro host range of equine infectious anemia virus. Intervirology 16:225–232;1981.

    Google Scholar 

  9. Berkhout B, Silverman RH, Jeang KT. Tattrans-activates the human immunodeficiency virus through a nascent RNA target. Cell 59:273–282;1989.

    Google Scholar 

  10. Bogerd HP, Fridell RA, Madore S, Cullen BR. Identification of a novel cellular cofactor for the Rev/Rex class of retroviral regulatory proteins. Cell 82:485–494;1995.

    Google Scholar 

  11. Calnan BJ, Biancalana S, Hudson D, Frankel AD. Analysis of arginine-rich peptides from the HIV Tat protein reveals unusual features of RNA-protein recognition. Genes Dev 5:201–210;1991.

    Google Scholar 

  12. Calnan BJ, Tidor B, Biancalana S, Hudson D, Frankel AD. Arginine-mediated RNA recognition: The arginine fork. Science 252:1167–1171;1991.

    Google Scholar 

  13. Carpenter S, Alexandersen S. Pathogenesis of equine infectious anemia virus infection. Semin Virol 3:157–166;1992.

    Google Scholar 

  14. Carpenter S, Alexandersen S, Long MJ, Perryman S, Chesebro B. Identification of a hypervariable region in the long terminal repeat of equine infectious anemia virus. J Virol 65:1605–1610;1991.

    Google Scholar 

  15. Carpenter S, Chesebro B. Change in host cell tropism associated with in vitro replication of equine infectious anemia virus. J Virol 63:2492–2496;1989.

    Google Scholar 

  16. Carpenter S, Evans LH, Sevoian M, Chesebro B. Role of the host immune response in selection of equine infectious anemia virus variants. J Virol 61:3783–3789;1987.

    Google Scholar 

  17. Carroll R, Derse D. Translation of equine infectious anemia virus bicistronic tat-rev mRNA requires leaky ribosome scanning of the tat CTG initiation codon. J. Virol 67:1433–1440;1993.

    Google Scholar 

  18. Carroll R, Martarano L, Derse D. Identification of lentivirus Tat functional domains through generation of equine infectious anemia virus/human immunodeficiency virus type 1 tat gene chimeras. J Virol 65:3460–3467;1991.

    Google Scholar 

  19. Carroll R, Peterlin BM, Derse D. Inhibition of human immunodeficiency virus type 1 Tat activity by coexpression of heterologoustrans-activators. J Virol 66:2000–2007;1992.

    Google Scholar 

  20. Carvalho M, Derse D. Mutational analysis of the equine infectious anemia virus Tat-responsive element. J Virol 65:3468–3474;1991.

    Google Scholar 

  21. Carvalho M, Derse D. Physical and functional characterization of transcriptional control elements in the equine infectious anemia virus promoter. J Virol 67:2064–2074;1993.

    Google Scholar 

  22. Carvalho M, Derse D. The PU.1/Spi-1 proto-oncogene is a transcriptional regulator of a lentivirus promoter. J Virol 67:3885–3890;1993.

    Google Scholar 

  23. Carvalho M, Kirkland M, Derse D. Protein interactions with DNA elements in variant equine infectious anemia virus enhancers and their impact on transcriptional activity. J Virol 67:6586–6595;1993.

    Google Scholar 

  24. Cheevers WP, McGuire TC. Equine infectious anemia: Immunopathogenesis and persistence. Rev Infect Dis 7:83–88;1985.

    Google Scholar 

  25. Chesebro B, Nishio J, Perryman S, Cann A, O'Brien W, Chen IS, Wehrly K. Identification of human immunodeficiency virus envelope gene sequences influencing viral entry into CD4-positive HeLa cells, T-leukemia cells, and macrophages. J Virol 65:5782–5789;1991.

    Google Scholar 

  26. Chun R, Jeang KT. Requirements for RNA polymerase II carboxy-terminal domain for activated transcription of human retroviruses, human T-cell lymphotropic virus I and HIV-1. J Biol Chem 271:27888–27894;1996.

    Google Scholar 

  27. Costa LRR, de Miranda Santos IKF, Issel CJ, Montelaro RC. Tumor necrosis factor-alpha production and disease severity after immunization with enriched major core protein (p26) and/or infection with equine infectious anemia virus. Vet Immunol Immunopathol 57:33–47;1997.

    Google Scholar 

  28. Derse D, Carroll R, Carvalho M. Transcriptional regulation of equine infectious anemia virus. Semin Virol 4:61–68;1993.

    Google Scholar 

  29. Derse D, Carvalho M, Carroll R, Peterlin BM. A minimal lentivirus Tat. J Virol 65:7012–7015;1991.

    Google Scholar 

  30. Derse D, Dorn P, DaSilva L, Martarano L. Structure and expression of the equine infectious anemia virus transcriptionaltrans-activator (tat). Dev Biol Stand 72:39–48;1990.

    Google Scholar 

  31. Derse D, Dorn PL, Levy L, Stephens RM, Rice NR, Casey JW. Characterization of equine infectious anemia virus long terminal repeat. J Virol 61:743–747;1987.

    Google Scholar 

  32. Dorn P, DaSilva L, Martarano L, Derse D. Equine infectious anemia virus Tat: Insights into the structure, function, and evolution of lentivirustrans-activator proteins. J Virol 64:1616–1624;1990.

    Google Scholar 

  33. Dorn PL, Derse D.Cis- andtrans-acting regulation of gene expression of equine infectious anemia virus. J Virol 62:3522–3526;1988.

    Google Scholar 

  34. Folks TM, Justement J, Kinter A, Schnittman S, Orenstein J, Poli G, Fauci AS. Characterization of promonocyte clone chronically infected with HIV and inducible by 13-phorbol-12-myristate acetate. J Immunol 140:1117–1122;1988.

    Google Scholar 

  35. Fridell RA, Partin KM, Carpenter S, Cullen BR. Identification of the activation domain of equine infectious anemia virus Rev. J Virol 67:7317–7323;1993.

    Google Scholar 

  36. Garcia-Martinez LF, Mavankal G, Neveu JM, Lane WS, Ivanov D, Gaynor RB. Purification of a Tat-associated kinase reveals a TFIIH complex that modulates HIV-1 transcription. EMBO J 16:2836–2850;1997.

    Google Scholar 

  37. Gatignol A, Kumar A, Rabson A, Jeang KT. Identification of cellular proteins that bind to the human immunodeficiency virus type 1trans-activation-responsive TAR element RNA. Proc Natl Acad Sci USA 86:7828–7832;1989.

    Google Scholar 

  38. Gaynor RB. Regulation of human immunodeficiency virus type-1 gene expression by thetrans-activator protein Tat. Curr Top Microbiol Immunol 193:51–78;1995.

    Google Scholar 

  39. Golemis E, Li Y, Fredrickson TN, Hartley YW, Hopkins N. Distinct segments within the enhancer region collaborate to specify the type of leukemia induced by nondefective Friend and Moloney viruses. J Virol 63:328–337;1989.

    Google Scholar 

  40. Gontarek RR, Derse D. Interactions among SR proteins, and exonic splicing enhancer, and a lentivirus REv protein regulate alternative splicing. Mol Cell Biol 16:2325–2331;1996.

    Google Scholar 

  41. Graves BJ, Rabson AB. Retrovirus gene expression: Transcription and RNA processing. In: Coffin J, Hughes S, Varmus H, eds. Retroviruses. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY, 1998, in press.

    Google Scholar 

  42. Gutekunst DE, Becvar CS. Responses in horses infected with equine infectious anemia virus adapted to tissue culture. Am J Vet Res 40:974–977;1979.

    Google Scholar 

  43. Hammond SA, Cook SJ, Lichtenstein DL, Issel CJ, Montelaro RC. Maturation of the cellular and humoral immune responses to persistent infection in horses by equine infectious anemia virus is a complex and lengthy process. J Virol 71:3840–3852;1997.

    Google Scholar 

  44. Hoffman D, White S. NMR analysis of thetrans-activation response (TAR) RNA element of equine infectious anemia virus. Nucleic Acids Res 23:4058–4065;1995.

    Google Scholar 

  45. Hope T, Pomerantz RJ. The human immuno-deficiency virus type 1 Rev protein: A pivotal protein in the viral life cycle. Curr Top Microbiol Immunol 193:91–106;1995.

    Google Scholar 

  46. Hope TJ, Bond BL, McDonald D, Klein NP, Parslow TG. Effector domains of human immunodeficiency virus type 1 Rev and human T-cell leukemia virus type 1 Rex are functionally interchangeable and share an essential peptide motif. J Virol 65:6001–6007;1991.

    Google Scholar 

  47. Huang L-H, Wang R, Gama-Sosa S, Shenoy S, Ehrlich M. A protein from human nuclei binds preferentially to 5-methylcytosine-rich DNA. Nature 308:293–295;1984.

    Google Scholar 

  48. Issel CJ, Adams WV, Meek L, Ochoa R. Transmission of equine infectious anemia virus from horses without clinical signs of disease. J Am Vet Med Assoc 180:272–275;1982.

    Google Scholar 

  49. Issel CJ, Coggins L. Equine infectious anemia: Current knowledge. J Am Vet Med Assoc 174:727–733;1979.

    Google Scholar 

  50. Issel CJ, Horohov DW, Lea DF, Adams WV, Hagius SD, McManus JM, Allison AC, Montelaro RC. Efficacy of inactivated whole-virus and subunit vaccines in preventing infection and disease caused by equine infectious anemia virus. J Virol 66:3398–3408;1992.

    Google Scholar 

  51. Kim CH, Casey JW. In vivo replicative status and envelope heterogeneity of equine infectious anemia virus in an inapparent carrier. J Virol 68:2777–2780;1994.

    Google Scholar 

  52. Klevjer-Anderson P, Cheevers WP, Crawford TB. Characterization of the infection of equine fibroblasts by equine infectious anemia virus. Arch Virol 60:279–289;1979.

    Google Scholar 

  53. Kono Y. Viremia and immunological responses in horses infected with equine infectious anemia virus. Natl Inst Anim Health Q 9:1–9;1969.

    Google Scholar 

  54. Kono Y, Hirasawa K, Fukunaga Y, Taniguchi T. Recrudescence of equine infectious anemia by treatment with immunosuppressive drugs. Natl Inst Anim Health Q 16:667–674;1975.

    Google Scholar 

  55. Kono Y, Kobayashi K, Fukunaga Y. Antigenic drift of equine infectious anemia virus in chronically infected horses. Arch Ges Virusforsch 41:1–10;1973.

    Google Scholar 

  56. Kono Y, Yokomizo Y. Attempts to cultivate the equine infectious anemia virus in various types of cells. Natl Inst Anim Health Q 8:182–186;1968.

    Google Scholar 

  57. Kono Y, Yoshino T, Fukunaga Y. Propagation and titration of equine infectious anemia virus in horse leucocyte culture. Natl Inst Anim Health Q 7:8–20;1967.

    Google Scholar 

  58. Langemeier JL, Cook SJ, Cook RF, Rushlow KE, Montelaro RC, Issel CJ. Detection of equine infectious anemia viral RNA in plasma samples from recently infected and long-term inapparent carrier animals by PCR. J Clin Microbiol 34:1481–1487;1996.

    Google Scholar 

  59. Leonard J, Parrott C, Buckler-White AJ, Turner W, Ross E, Martin M, Rabson AB. The NF-kB binding sites in the human immunodeficiency virus type 1 long terminal repeat are not required for virus infectivity. J Virol 63:4919–4924;1989.

    Google Scholar 

  60. Li Y, Golemis E, Hartley JW, Hopkins N. Disease specificity of nondefective Friend and Moloney murine leukemia viruses is controlled by a small number of nucleotides. J Virol 61:693–700;1989.

    Google Scholar 

  61. Lichtenstein DL, Issel CJ, Montelaro RC. Genomic quasispecies associated with the initiation of infection and disease in ponies experimentally infected with equine infectious anemia virus. J Virol 70:3346–3354;1996.

    Google Scholar 

  62. Lichtenstein DL, Rushlow KE, Cook RF, Raabe ML, Swardson CJ, Kociba GJ, Issel CJ, Montelaro RC. Replication in vitro and in vivo of an equine infectious anemia virus mutant deficient in dUTPase activity. J Virol 69:2881–2888;1995.

    Google Scholar 

  63. Madore SJ, Cullen BR. Genetic analysis of the cofactor requirement for human immunodeficiency virus type 1 Tat function. J Virol 67:3703–3711;1993.

    Google Scholar 

  64. Malim MH, Bohnlein S, Fenrick R, Le S-Y, Maizel JV, Cullen BR. Functional comparison of the Revtrans-activators encoded by different primate immunodeficiency virus species. Proc Natl Acad Sci USA 86:8222–8226;1989.

    Google Scholar 

  65. Malim MH, Hauber J, Le S, Maizel JV, Cullen BR. The HIV-1 Revtrans-activator acts through a structured target sequence to activate nuclear export of unspliced viral mRNA. Nature 338:254–257;1989.

    Google Scholar 

  66. Malquist WA, Burnett D, Becvar CS. Production of equine infectious anemia antigen in a persistently infected cell line. Arch Ges Virusforsch 42:361–370;1973.

    Google Scholar 

  67. Mancuso RA, Hope TJ, Zhu L, Derse D, Phillips T, Parslow TG. Posttranslational effector domains in the Rev proteins of feline immunodeficiency virus and equine infectious anemia virus. J Virol 68:1998–2001;1994.

    Google Scholar 

  68. Marciniak RA, Garcia-Blanco MA, Sharp PA. Identification and characterization of a HeLa nuclear protein that specifically binds to thetrans-activation-response (TAR) element of human immunodeficiency virus. Proc Natl Acad Sci USA 87:3624–3628;1990.

    Google Scholar 

  69. Martarano L, Stephens R, Rice N, Derse D. Equine infectious anemia virustrans-regulatory protein Rev controls viral mRNA stability, accumulation, and alternative splicing. J Virol 68:3102–3111;1994.

    Google Scholar 

  70. Maury W. Monocyte maturation controls expression of equine infectious anemia virus. J Virol 68:6270–6279;1994.

    Google Scholar 

  71. Maury W, Carpenter S, Graves K, Chesebro B. Cellular and viral specificity of equine infectious anemia virus Tattrans-activation. Virology 200:632–642;1994.

    Google Scholar 

  72. Maury WJ, Oaks JL, Bradley S. In vitro propagation of equine infectious anemia virus in equine endothelial cells, submitted 1998.

  73. Maury WJ, Perryman S, Seid B, Oaks JL, McGuire T, Crawford T, Carpenter S. Localized sequence heterogeneity of in vivo equine infectious anemia virus LTRs. J Virol 71:4929–4937;1996.

    Google Scholar 

  74. McGuire T, Tumas D, Byrne KM, Hines MT, Leib SR, Brassfield AL, O'Rourke KI, Perryman LE. Major histocompatibility complex-restricted CD8+ cytotoxic T lymphocytes from horses with equine infectious anemia virus recognize Env and Gag/Pr proteins. J Virol 68:1459–1467;1994.

    Google Scholar 

  75. McGuire TC, Crawford TB, Henson JB. Immunofluorescent localization of equine infectious anemia virus in tissue. Am J Pathol 62:283–294;1971.

    Google Scholar 

  76. Michael NL, Mo T, Merzouki A, O'Shaughnessy M, Oster C, Burke DS, Redfield RR, Birx DL, Cassol SA. Human immunodeficiency virus type 1 cellular RNA load and splicing patterns predict disease progression in a longitudinally studied cohort. J Virol 69:1868–1877;1995.

    Google Scholar 

  77. Moriuchi M, Moriuchi H, Turner W, Fauci AS. Cloning and analysis of the promoter region of CXCR4, a coreceptor for HIV-1 entry. J Immunol 159:4322–4329;1997.

    Google Scholar 

  78. Muesing MA, Smith DH, Capon DJ. Regulation of mRNA accumulation by a human immunodeficiency virustrans-activator protein. Cell 48:691–701;1987.

    Google Scholar 

  79. Mujeeb A, Parslow TG, Yuan Y-C, James TL. Aqueous solution structure of a hybrid lentiviral Tat peptide and a model of its interaction with HIV-1 TAR RNA. J Biomol Struct Dyn 13:649–660;1996.

    Google Scholar 

  80. Myers G, Korber B, Foley B, Jeang K-T, Mellors JW, Wain-Hobson S. Human Retrovirus and AIDS 1996: A compilation and analysis of nucleic acid and amino acid sequences. Los Alamos, NM, Los Alamos Natl Lab, 1996.

    Google Scholar 

  81. Nabel G, Baltimore D. An inducible transcription factor activates expression of human immunodeficiency virus in T cells. Nature 326:711–713;1987.

    Google Scholar 

  82. Nekhai S, Shukla RR, Kumar A. A human primary T-lymphocyte-derived human immunodeficiency virus type 1 Tat-associated kinase phosphorylates the C-terminal domain of RNA polymerase II and induces CAK activity. J Virol 71:7436–7441;1997.

    Google Scholar 

  83. Noiman S, Yaniv A, Tsach T, Miki T, Tronick SR, Gazit A. The Tat protein of equine infectious anemia virus is encoded by at least three types of transcripts. Virology 184:521–530;1991.

    Google Scholar 

  84. O'Brien WA, Koyanagi Y, Namazie A, Zhai J-Q, Diagne A, Idler K, Zack JA, Chen ISY. HIV-1 tropism for mononuclear phagocytes can be determined by regions of gp120 outside the CD4-binding domain. Nature 348:69–73;1990.

    Google Scholar 

  85. O'Rourke KI, Perryman LE, McGuire TC. Antiviral, anti-glycoprotein and neutralizing anti-bodies in foals with equine infectious anemia virus. J Gen Virol 69:667–674;1988.

    Google Scholar 

  86. Oaks JL, McGuire TC, Ulibarri C, Crawford TB. Subclinical equine infectious anemia virus infection: Viral load and host cells, submitted 1997.

  87. Oaks JL, Ulibarri C, Crawford JB. Endothelial cell infection by equine infectious anemia virus, submitted 1998.

  88. Orrego A, Issel JC, Montelaro RC, Adams WV Jr. Virulence and in vitro growth of a cell-adapted strain of equine infectious anemia virus after serial passage in ponies. Am J Vet Res 43:1556–1560;1982.

    Google Scholar 

  89. Parrott C, Seidner T, Duh E, Leonard J, Theodore TS, Buckler-White A, Martin M, Rabson AB. Variable role of the long terminal repeat Sp1-binding sites in human immunodeficiency virus replication in T lymphocytes. J Virol 65:1414–1419;1991.

    Google Scholar 

  90. Payne S, Fang F, Liu C, Dhruva B, Rwambo P, Issel JC, Montelaro RC. Antigenic variation and lentivirus persistence: Variations in envelope gene sequences during EIAV infection resemble changes reported for sequential isolates of HIV. Virology 161:321–331;1987.

    Google Scholar 

  91. Payne S, Salinovich O, Nauman SM, Issel CJ, Montelaro RC. Course and extent of variation of equine infectious anemia virus during parallel persistent infections. J Virol 61:1266–1270;1987.

    Google Scholar 

  92. Payne SL, Qi X-M, Shao H, Dwyer A, Fuller FJ. Disease induction by virus derived from molecular clones of equine infectious anemia virus. J Virol 72, in press.

  93. Payne SL, Rausch J, Rushlow K, Montelaro RC, Issel C, Flaherty M, Perry S, Sellon D, Fuller F. Characterization of infectious molecular clones of equine infectious anemia virus. J Gen Virol 75:425–429;1994.

    Google Scholar 

  94. Perry ST, Flaherty MT, Kelley MJ, Clabough DL, Tronick SR, Coggins L, Whetter L, Lengel CR, Fuller F. The surface envelope protein gene region of equine infectious anemia virus is not an important determinant of tropism in vitro. J Virol 66:4085–4097;1992.

    Google Scholar 

  95. Perryman LE, O'Rourke KI, Mason PH, McGuire TC. Immune responses are required to terminate viremia in equine infectious anemia lentivirus infection. J Virol 62:3073–3076;1988.

    Google Scholar 

  96. Powell DM, Amaral MC, Wu JY, Maniatis T, Greene WC. HIV Rev-dependent binding of SF2/ASF to the Rev response element: Possible role in Rev-mediated inhibition of HIV RNA splicing. Proc Natl Acad Sci USA 94:973–978;1997.

    Google Scholar 

  97. Rice NR, Henderson LE, Sowder RC, Copeland TD, Oroszlan S, Edwards FJ. Synthesis and processing of the transmembrane envelope protein of equine infectious anemia virus. J Virol 64:3770–3778;1990.

    Google Scholar 

  98. Rice NR, Lequarre AS, Casey JW, Lahn S, Stephens RM, Edwards FJ. Viral DNA in horses infected with equine infectious anemia virus. J Virol 63:5194–5200;1989.

    Google Scholar 

  99. Rosen CA, Terwilliger E, Dayton A, Sodroski JG, Haseltine WA. Intrageniccis-acting art gene-responsive sequences of the human immunodeficiency virus. Proc Natl Acad Sci USA 85:2071–2075;1988.

    Google Scholar 

  100. Rosin-Arbesfeld R, Mashiah P, Willbold D, Rosch P, Tronick S, Yaniv A, Gazit A. Biological activity and intracellular location of the Tat protein of equine infectious anemia virus. Gene 150:307–311;1994.

    Google Scholar 

  101. Rosin-Arbesfeld R, Rivlin M, Noiman S, Mashiah P, Yaniv A, Miki T, Tronick SR, Gazit A. Structural and functional characterization of rev-like transcripts of equine infectious anemia virus. J Virol 67:5640–5646;1993.

    Google Scholar 

  102. Ross EK, Buckler-White AJ, Rabson AB, Englund G, Martin MA. Contribution of NF-kB and Sp1 binding motifs to the replicative capacity of human immunodeficiency virus type 1: Distinct patterns of viral growth are determined by T-cell types. J Virol 65:4350–4358;1991.

    Google Scholar 

  103. Saksela K, Stevens C, Rubinstein P, Baltimore D. Human immunodeficiency virus type 1 mRNA expression in peripheral blood cells predicts disease progression independently of the numbers of CD4+ lymphocytes. Proc Natl Acad Sci USA 91:1104–1108;1994.

    Google Scholar 

  104. Schiltz RL, Shih DS, Rasty S, Montelaro RC, Rushlow KE. Equine infectious anemia virus gene expression: Characterization of the RNA splicing pattern and the protein products encoded by open reading frames S1 and S2. J Virol 66:3455–3465;1992.

    Google Scholar 

  105. Sellon DC. Equine infectious anemia. Vet Clin North Am Equine Pract 9:321–336;1993.

    Google Scholar 

  106. Sellon DC, Perry ST, Coggins L, Fuller FJ. Wild-type equine infectious anemia virus replicates in vivo predominantly in tissue macrophages, not in peripheral blood monocytes. J Virol 66:5906–5913;1992.

    Google Scholar 

  107. Sellon DC, Walker KM, Russell KE, Perry ST, Fuller FJ. Phorbol ester stimulation of equine macrophage cultures alters expression of equine infectious anemia virus. Vet Microbiol 52:209–221;1996.

    Google Scholar 

  108. Sheline CT, Milocco LH, Jones KA. Two distinct nuclear transcription factors recognize loop and bulge residues of the HIV-1 TAR RNA hairpin. Genes Dev 5:2508–2520;1991.

    Google Scholar 

  109. Sherman L, Yaniv A, Lichtman-Pleban H, Tronick SR, Gazit A. Analysis of regulatory elements of the equine infectious anemia virus and caprine arthritis-encephalitis virus long terminal repeats. J Virol 63:4925–4931;1989.

    Google Scholar 

  110. Short MK, Okenquist SA, Lenz J. Correlation of leukemogenic potential of murine retroviruses with transcriptional tissue preference of the viral long terminal repeats. J Virol 61:1967–1972;1987.

    Google Scholar 

  111. Smith TA, Davis E, Carpenter S. Endotoxin treatment of EIAV-infected horse macrophage culture decreases production of infectious virus, submitted 1997.

  112. Steagall WK, Robek MD, Perry ST, Fuller FJ, Payne SL. Incorporation of uracil into viral DNA correlates with reduced replication of EIAV in macrophages. Virology 210:302–313;1995.

    Google Scholar 

  113. Stephens RM, Derse D, Rice NR. Cloning and characterization of cDNAs encoding equine infectious anemia virus Tat and putative Rev proteins. J Virol 64:3716–3725;1990.

    Google Scholar 

  114. Sticht S, Willbold D, Bayer P, Ejchart A, Herrmann F, Rosin-Arbesfeld R, Gazit R, Yaniv A, Frank R, Rosch P. Equine infectious anemia virus Tat is a predominantly helical protein. Eur J Biochem 218:973–976;1993.

    Google Scholar 

  115. Tan W, Schalling M, Zhao C, Luukkonen M, Nilsson M, Fenyo EM, Pavlakis GN, Schwartz S. Inhibitory activity of the equine infectious anemia virus major 5′ splice site in the absence of Rev. J Virol 70:3645–3658;1996.

    Google Scholar 

  116. Tornquist SJ, Crawford TB. Suppression of megakaryocyte colony growth by plasma from foals infected with equine infectious anemia virus. Blood 90:2357–2363;1997.

    Google Scholar 

  117. Tumas DB, Hines MT, Perryman LE, Davis WC, McGuire TC. Corticosteroid immunosuppression and monoclonal antibody-mediated CD5+ T lymphocyte depletion in normal and equine infectious anaemia virus-carrier horses. J Gen Virol 75:959–968;1994.

    Google Scholar 

  118. Wang SZ-S, Rushlow KE, Issel CJ, Cook RF, Cook SL, Raabe ML, Chong Y-H, Costa L, Montelaro RC. Enhancement of EIAV replication and disease by immunization with baculovirus-expressed recombinant envelope surface glycoprotein. Virology 199:247–251;1994.

    Google Scholar 

  119. Westervelt P, Gendelman HE, Ratner L. Identification of a determinant within the human immunodeficiency virus 1 surface envelope glycoprotein critical for productive infection of primary monocytes. Proc Natl Acad Sci USA 88:3097–3101;1991.

    Google Scholar 

  120. Whetter L, Archambault D, Perry S, Gazit A, Coggins L, Yaniv A, Clabough D, Dahlberg J, Fuller F, Tronick S. Equine infectious anemia virus derived from a molecular clone persistently infects horses. J Virol 64:5750–5756;1990.

    Google Scholar 

  121. Willbold D, Kruger U, Frank R, Rosin-Arbesfeld R, Gazit A, Yaniv A, Rosch P. Sequence-specific resonance assignments of the H-NMR spectra of a synthetic, biologically active EIAV Tat protein. Biochemistry 32:8439–8445;1993.

    Google Scholar 

  122. Willbold D, Rosin-Arbesfeld R, Sticht H, Frank R, Rosch P. Structure of the equine infectious anemia virus Tat protein. Science 264:1584–1587;1994.

    Google Scholar 

  123. Wright CM, Felber BK, Paskalis H, Pavlakis GN. Expression and characterization of thetrans-activator of HTLV-III/LAV virus. Science 234:988–992;1986.

    Google Scholar 

  124. Wu F, Garcia J, Sigman D, Gaynor R. Tat regulates binding of the human immunodeficiencv virustrans-activating region RNA loop-binding protein TRP-185. Genes Dev 5:2128–2140;1991.

    Google Scholar 

  125. Yang X, Herrmann CH, Rice AP. The human immunodeficiency virus Tat proteins specifically associate with TAK in vivo and require the carboxyl-terminal domain of RNA polymerase II for function. J Virol 70:4576–4584;1996.

    Google Scholar 

  126. Zhang D, Hetherington CJ, Chen H, Tenen DG. The macrophage transcription factor PU.1 directs tissue-specific expression of the macrophage colony-stimulating factor receptor. Mol Cell Biol 14:373–381;1994.

    Google Scholar 

  127. Zhang DE, Hetherington CJ, Meyers S, Rhoades KL, Larson CJ, Chen HM, Hiebert SW, Tenen DG. CCAAT enhancer-binding protein (C/EBP) and AML1 (CBF alpha2) synergistically activate the macrophage colony-stimulating factor receptor promoter. Mol Cell Biol 16:1231–1240;1996.

    Google Scholar 

  128. Zhang DE, Hohaus S, Voso MT, Chen HM, Smith LT, Hetherington CJ, Tenen DG. Function of PU.1(Spi-1), C/EBP, and AML1 in early myelopoiesis: Regulation of multiple myeloid CSF receptor promoters. Curr Top Microbiol Immunol 211:243–252;1996.

    Google Scholar 

  129. Zhang X-Y, Inamdar NM, Supakar PC, Wu K, Ehrlich KC, Ehrlich M. Three MDBP sites in the enhancer-promoter region of human cytomegalovirus. Virology 182:865–869;1991.

    Google Scholar 

  130. Zhang X-Y, Jabrane-Ferrat N, Asiedu CK, Samac S, Peterlin BM, Ehrlich M. The major histocompatibility complex class II promoter-binding protein RFX (NF-X) is a methylated DNA-binding protein. Mol Cell Biol 13:6810–6818;1993.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Maury, W. Regulation of equine infectious anemia virus expression. J Biomed Sci 5, 11–23 (1998). https://doi.org/10.1007/BF02253351

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02253351

Key Words

Navigation