Skip to main content
Log in

Immunology

Antigen-presenting cells in the gut

  • Review
  • Published:
Journal of Biomedical Science

Abstract

It has been known for the past 85 years that mucosal responses can be stimulated by local presentation of antigen and that the gut immune system is capable of mounting both primary and secondary responses to potentially harmful antigens while avoiding the expression of damaging responses to harmless dietary proteins. How these types of responses are induced and regulated remains unclear. In the gut attention has for some time been focused on Peyer's patches (PP) due to evidence that they play a vital role in the induction of humoral and cellular responses. Moreover, it has been established that MHC class II molecules are found in the gut mucosa on a variety of cell types outside PP, namely the lamina propria (LP). Fed antigens have also been detected in the LP and studies have shown that LP cells can stimulate allogeneic mixed lymphocyte responses and are capable of presenting soluble protein antigen to naïve T cells. This article reviews the present understanding of the possible roles of PP and LP in intestinal immunity in terms of induction, regulation, surveillance of immune responses and the antigen presenting cell types involved.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Allan CH, Mendrick DL, Trier JS. Rat intestinal M cells contain acidic endosomal-lysosomal compartments and express class II major histocompatibility complex determinants. Gastroenterology 104:698–708;1993.

    PubMed  Google Scholar 

  2. Bailey M, Plunkett FJ, Rothkotter HJ, Vega-Lopez MA, Haverson K, Stokes CR. Regulation of mucosal immune responses in effector sites. Proc Nutr Soc 60:427–435;2001.

    PubMed  Google Scholar 

  3. Banchereau J, Steinman RM. Dendritic cells and the control of immunity. Nature 392:245–252;1998.

    Article  PubMed  Google Scholar 

  4. Besredka A. De la vaccination contre les états typhoïdes par la voie buccale. Annals Inst Pasteur, Paris 33:882;1919.

    Google Scholar 

  5. Besredka A. Local Immunization. Bailliere, Tyndal & Cox, p 48, 1927.

  6. Binns RM, Licence ST. Patterns of migration of labeled blood lymphocyte subpopulations: Evidence for two types of Peyer's patches in the young pigs. Adv Exp Med Biol 186:661–668;1985.

    PubMed  Google Scholar 

  7. Bjerke K, Brandtzaeg P, Fausa O. T cell distribution is different in follicle-associated epithelium of human Peyer's patches and villous epithelium. Clin Exp Immunol 74:270–275;1988.

    PubMed  Google Scholar 

  8. Bjerke K, Halstensen TS, Jahnsen F, Pulford K, Brandtzaeg P. Distribution of macrophages and granulocytes expressing L1 protein (calprotectin) in human Peyer's patches compared with normal ileal lamina propria and mesenteric lymph nodes. Gut 34:1357–1363;1993.

    PubMed  Google Scholar 

  9. Bland PW, Bailey M. Immunology of the small intestine. Transplant Proc 30:2560–2561;1998.

    Article  PubMed  Google Scholar 

  10. Bland PW, Warren LG. Antigen presentation by epithelial cells of the rat small intestine. II. Selective induction of suppressor T cells. Immunology 58:9–14;1986.

    PubMed  Google Scholar 

  11. Bland PW, Warren LG. Antigen presentation by epithelial cells of the rat small intestine. I. Kinetics, antigen specificity and blocking by anti-Ia antisera. Immunology 58:1–7;1986.

    PubMed  Google Scholar 

  12. Blumberg RS, Terhorst C, Bleicher P, McDermott FV, Allan CH, Landau SB, Trier JS, Balk SP. Expression of a nonpolymorphic MHC class I-like molecule, CD1D, by human intestinal epithelial cells. J Immunol 147:2518–2524;1991.

    PubMed  Google Scholar 

  13. Boismenu R, Chen Y, Havran WL. The role of intraepithelial gamma-delta T cells: A gut-feeling. Microbes Infect 1:235–240;1999.

    Article  PubMed  Google Scholar 

  14. Boismenu R, Havran WL. An innate view of gamma-delta T cells. Curr Opin Immunol 9:57–63;1997.

    Article  PubMed  Google Scholar 

  15. Boismenu R, Havran WL. Modulation of epithelial cell growth by intraepithelial gamma delta T cells. Science 266:1253–1255;1994.

    PubMed  Google Scholar 

  16. Boismenu R, Semeniuk D, Murgita RA. Purification and characterization of human and mouse recombinant alpha-fetoproteins expressed inEscherichia coli. Protein Expr Purif 10:10–26;1997.

    PubMed  Google Scholar 

  17. Boismenu R, Wu T, Havran WL, Chen Y. Role of gamma-delta T cells in a murine colitis model. Fed Proc 12:A593-A595;1998.

    Google Scholar 

  18. Borghesi C, Regoli M, Bertelli E, Nicoletti C. Modifications of the follicle-associated epithelium by short-term exposure to a non-intestinal bacterium. J Pathol 180:326–332;1996.

    Article  PubMed  Google Scholar 

  19. Brandtzaeg P, Berstad AE, Farstad IN, Haraldsen G, Helgeland L, Jahnsen FL, Johansen FE, Natvig IB, Nilsen EM, Rugtveit J. Mucosal immunity — a major adaptive defence mechanism. Behring Inst Mitt 98:1–23;1997.

    PubMed  Google Scholar 

  20. Chesnut RW, Grey HM. Antigen presentation by B cells and its significance in T-B interactions. Adv Immunol 39:51–94;1986.

    PubMed  Google Scholar 

  21. Craig SW, Cebra JJ. Peyer's patches: An enriched source of precursors for IgA-producing immunocytes in the rabbit. J Exp Med 134:188–200;1971.

    Article  PubMed  Google Scholar 

  22. Cumberbatch M, Kimber I. Dermal tumour necrosis factor-alpha induces dendritic cell migration to draining lymph nodes, and possibly provides one stimulus for Langerhans' cell migration. Immunology 75:257–263;1992.

    PubMed  Google Scholar 

  23. Ermak TH, Owen RL. Differential distribution of lymphocytes and accessory cells in mouse Peyer's patches. Anat Rec 215:144–152;1986.

    PubMed  Google Scholar 

  24. Ermak TH, Steger HJ, Pappo J. Phenotypically distinct subpopulations of T cells in domes and M-cell pockets of rabbit gut-associated lymphoid tissues. Immunology 71:530–537;1990.

    PubMed  Google Scholar 

  25. Fagarasan S, Kinoshita K, Muramatsu M, Ikuta K, Honjo T. In situ class switching and differentiation to IgA-producing cells in the gut lamina propria. Nature 413:639–643;2001.

    Article  PubMed  Google Scholar 

  26. Fagarasan S, Shinkura R, Kamata T, Nogaki F, Ikuta K, Honjo T. Mechanism of B1 cell differentiation and migration in GALT. Curr Top Microbiol Immunol 252:221–229;2000.

    PubMed  Google Scholar 

  27. Farstad IN, Halstensen TS, Fausa O, Brandtzaeg P. Heterogeneity of M-cell-associated B and T cells in human Peyer's patches. Immunology 83:457–464;1994.

    PubMed  Google Scholar 

  28. Forbes GM, Horne R, Erber WN, Collins BJ, Papadimitriou JM. Ultrastructural evidence of intestinal mucosal macrophage activation after bone marrow transplantation. Pathology 28:251–254;1996.

    Article  PubMed  Google Scholar 

  29. Fujihashi K, Dohi T, Rennert PD, Yamamoto M, Koga T, Kiyono H, McGhee JR. Peyer's patches are required for oral tolerance to proteins. Proc Natl Acad Sci USA 98:3310–3315;2001.

    Article  PubMed  Google Scholar 

  30. Fujihashi K, Kato H, van Ginkel FW, Koga T, Boyaka PN, Jackson RJ, Kato R, Hagiwara Y, Etani Y, Goma I, Fujihashi K, Kiyono H, McGhee JR. A revisit of mucosal IgA immunity and oral tolerance. Acta Odontol Scand 59:301–308;2001.

    PubMed  Google Scholar 

  31. Gebert A, Rothkotter HJ, Pabst R. M cells in Peyer's patches of the intestine. Int Rev Cytol 167:91–159;1996.

    PubMed  Google Scholar 

  32. Gerrard TL, Volkman DJ, Jurgensen CH, Fauci AS. Activated human T cells can present alloantigens but cannot present soluble antigens. Cell Immunol. 95:65–74;1985.

    Article  PubMed  Google Scholar 

  33. Griebel PJ, Hein WR. Expanding the role of Peyer's patches in B-cell ontogeny. Immunol Today 17:30–39;1996.

    PubMed  Google Scholar 

  34. Grimm MC, Pullman WE, Bennett GM, Sullivan PJ, Pavli P, Doe WF. Direct evidence of monocyte recruitment to inflammatory bowel disease mucosa. J Gastroenterol Hepatol 10:387–395;1995.

    PubMed  Google Scholar 

  35. Guy-Grand D, Vassalli P. Gut intraepithelial T lymphocytes. Curr Opin Immunol 5:247–252;1993.

    PubMed  Google Scholar 

  36. Hanninen A, Harrison LC. Gamma delta T cells as mediators of mucosal tolerance: The autoimmune diabetes model. Immunol Rev 173:109–119;2000.

    Article  PubMed  Google Scholar 

  37. Haraldsen G, Sollid LM, Bakke O, Farstad IN, Kvale D, Molberg, Norstein J, Stang E, Brandtzaeg P. Major histocompatibility complex class II-dependent antigen presentation by human intestinal endothelial cells. Gastroenterology 114:649–656;1998.

    Article  PubMed  Google Scholar 

  38. Harper HM, Cochrane L, Williams NA. The role of small intestinal antigen-presenting cells in the induction of T-cell reactivity to soluble protein antigens: Association between aberrant presentation in the lamina propria and oral tolerance. Immunology 89:449–456;1996.

    Article  PubMed  Google Scholar 

  39. Haverson K, Bailey M, Stokes CR. T-cell populations in the pig intestinal lamina propria: Memory cells with unusual phenotypic characteristics. Immunology 96:66–73;1999.

    PubMed  Google Scholar 

  40. Haverson K, Singha S, Stokes CR, Bailey M. Professional and non-professional antigen presenting cells in the porcine small intestine. Immunology 101:492–500;2000.

    PubMed  Google Scholar 

  41. Holt PG, Britten D, Sedgwick JD. Suppression of IgE responses by antigen inhalation: Studies on the role of genetic and environmental factors. Immunology 60:97–102;1987.

    PubMed  Google Scholar 

  42. Hummel KP. The structure and development of the lymphatic tissues in the intestine of the albino rat. Am J Anat 57:351–364;1965.

    Article  Google Scholar 

  43. Jarry A, Robaszkiewicz M, Brousse N, Potet F. Immune cells associated with M cells in the follicle-associated epithelium of Peyer's patches in the rat. An electron- and immuno-electron-microscopic study. Cell Tissue Res 255:293–298;1989.

    Article  PubMed  Google Scholar 

  44. Jones BD, Ghori N, Falkow S.Salmonella typhimurium initiates murine infection by penetrating and destroying the specialized epithelial M cells of the Peyer's patches. J Exp Med 180:15–23;1994.

    Article  PubMed  Google Scholar 

  45. Kambarage D, Bland P, Stokes C. The accessory cell activity of porcine intestinal macrophages in the induction of T cell responses. J Vet Med Sci 56:1135–1138;1994.

    PubMed  Google Scholar 

  46. Kambarage DM, Bland P, Stokes C. Comparison of the requirement of porcine peripheral blood monocytes and intestinal lamina propria macrophages as accessory cells in primary allogeneic mixed leukocyte responses and oxidative mitogenesis. J Vet Med Sci 57:617–621;1995.

    PubMed  Google Scholar 

  47. Kelly RH. Localization of afferent lymph cells within the draining node during a primary immune response. Nature 227:510–513;1970.

    Article  PubMed  Google Scholar 

  48. Kelsall BL, Strober W. Dendritic cells of the gastrointestinal tract. Springer Semin Immunopathol 18:409–420;1997.

    PubMed  Google Scholar 

  49. Kelsall BL, Strober W. Peyer's patch dendritic cells and the induction of mucosal immune responses. Res Immunol 148:490–498;1997b.

    Article  PubMed  Google Scholar 

  50. Kerneis S, Bogdanova A, Kraehenbuhl JP, Pringault E. Conversion by Peyer's patch lymphocytes of human enterocytes into M cells that transport bacteria. Science 277:949–952;1997.

    Article  PubMed  Google Scholar 

  51. Kerneis S, Caliot E, Stubbe H, Bogdanova A, Kraehenbuhl J, Pringault E. Molecular studies of the intestinal mucosal barrier physiopathology using cocultures of epithelial and immune cells: A technical update. Microbes Infect 2:1119–1124;2000.

    Article  PubMed  Google Scholar 

  52. Kilshaw PJ. Expression of the mucosal T cell integrin alpha M290 beta 7 by a major subpopulation of dendritic cells in mice. Eur J Immunol 23:3365–3368;1993.

    PubMed  Google Scholar 

  53. Kimber I, Cumberbatch M. Stimulation of Langerhans cell migration by tumor necrosis factor alpha (TNF-alpha). J Invest Dermatol 99:48S-50S;1992.

    Article  PubMed  Google Scholar 

  54. Knight SC, Farrant J, Bryant A, Edwards AJ, Burman S, Lever A, Clarke J, Webster AD. Non-adherent, low-density cells from human peripheral blood contain dendritic cells and monocytes, both with veiled morphology. Immunology 57:595–603;1986.

    PubMed  Google Scholar 

  55. Kraehenbuhl JP, Neutra MR. Epithelial M cells: Differentiation and function. Annu Rev Cell Dev Biol 16:301–332;2000.

    Article  PubMed  Google Scholar 

  56. Lampert IA, Suitters AJ, Chisholm PM. Expression of Ia antigen on epidermal keratinocytes in graft-versus-host disease. Nature 293:149–150;1981.

    Article  PubMed  Google Scholar 

  57. Lanzavecchia A. Antigen-specific interaction between T and B cells. Nature 314:537–539;1985.

    Article  PubMed  Google Scholar 

  58. Larsen CP, Steinman RM, Witmer-Pack M, Hankins DF, Morris PJ, Austyn JM. Migration and maturation of Langerhans cells in skin transplants and explants. J Exp Med 172:1483–1493;1990.

    Article  PubMed  Google Scholar 

  59. Lefrancois L, Puddington L. Extrathymic intestinal T-cell development: Virtual reality? Immunol Today 16:16–21;1995.

    Article  PubMed  Google Scholar 

  60. Liu LM, MacPherson GG. Antigen acquisition by dendritic cells: Intestinal dendritic cells acquire antigen administered orally and can prime naive T cells in vivo. J Exp Med 177:1299–1307;1993.

    Article  PubMed  Google Scholar 

  61. Liu LM, MacPherson GG. Antigen processing by rat lymph-borne dendritic cells. Adv Exp Med Biol 378:215–217;1995a.

    PubMed  Google Scholar 

  62. Liu LM, MacPherson GG. Antigen processing: Cultured lymph-borne dendritic cells can process and present native protein antigens. Immunology 84:241–246;1995b.

    PubMed  Google Scholar 

  63. Liu LM, MacPherson GG. Lymph-borne (veiled) dendritic cells can acquire and present intestinally administered antigens. Immunology 73:281–286;1991.

    PubMed  Google Scholar 

  64. Liu LM, MacPherson GG. Rat intestinal dendritic cells: Immunostimulatory potency and phenotypic characterization. Immunology 85:88–93;1995c.

    PubMed  Google Scholar 

  65. Macatonia SE, Knight SC, Edwards AJ, Griffiths S, Fryer P. Localization of antigen on lymph node dendritic cells after exposure to the contact sensitizer fluorescein isothiocyanate. Functional and morphological studies. J Exp Med 166:1654–1667;1987.

    Article  PubMed  Google Scholar 

  66. MacDonald TT, Monteleone G. IL-12 and Th1 immune responses in human Peyer's patches. Trends Immunol 22:244–247;2001.

    Article  PubMed  Google Scholar 

  67. MacPherson GG, Jenkins CD, Stein MJ, Edwards C. Endotoxin-mediated dendritic cell release from the intestine. Characterization of released dendritic cells and TNF dependence. J Immunol 154:1317–1322;1995.

    PubMed  Google Scholar 

  68. MacPherson GG. Properties of lymph-borne (veiled) dendritic cells in culture. I. Modulation of phenotype, survival and function: Partial dependence on GM-CSF. Immunology 68:102–107;1989.

    PubMed  Google Scholar 

  69. Maeda Y, Noda S, Tanaka K, Sawamura S, Aiba Y, Ishikawa H, Hasegawa H, Kawabe N, Miyasaka M, Koga Y. The failure of oral tolerance induction is functionally coupled to the absence of T cells in Peyer's patches under germfree conditions. Immunobiology 204:442–457;2001.

    PubMed  Google Scholar 

  70. Makala LH, Kamada T, Nagasawa H, Igarashi I, Fujisaki K, Suzuki N, Mikami T, Haverson K, Bailey M, Stokes CR, Bland PW. Ontogeny of pig discrete Peyer's patches: Expression of surface antigens. J Vet Med Sci 63:625–636;2001.

    PubMed  Google Scholar 

  71. Makala LH, Reyes JC, Nishikawa Y, Tsushima Y, Xuan X, Huang X, Nagasawa H. A comparison of the phenotype of dendritic cells derived from discrete Peyer's patch macrophages of non-infected andToxoplasma gondii infected mice. J Vet Med Sci 65:591–597;2003.

    PubMed  Google Scholar 

  72. Makala LH, Reyes JC, Nishikawa Y, Tsushima Y, Xuan X, Huang X, Battsetseg B, Matsuo T, Nagasawa H. Phenotype and function of murine discrete Peyer's patch macrophage derived dendritic cells. J Vet Med Sci 65:491–499;2003.

    Article  PubMed  Google Scholar 

  73. Makala LH, Suzuki N, Nagasawa H. Peyer's patches: Organized lymphoid structures for the induction of mucosal immune responses. Pathobiology 70:58–68;2002/2003.

    Article  Google Scholar 

  74. Makala LHC, Haverson K, Stokes CR, Bailey M, Bland PW. Isolation and characterization of pig Peyer's patch dendritic cells. Vet Immunol Immunopathol 61:67–81;1998.

    Article  PubMed  Google Scholar 

  75. Makala LHC, Kamada T, Nishikawa Y, Nagasawa H, Igarashi I, Fujisaki K, Suzuki N, Mikami T, Haverson K, Bailey M, Stokes CR, Bland PW. Ontogeny of pig discrete Peyer's patches: Distribution and morphometric analysis. Pathobiology 68:275–282;2000a.

    Article  PubMed  Google Scholar 

  76. Makala LHC, Nishikawa Y, Kamada T, Mishima M, Xuan X, Suzuki H, Fujisaki K, Nagasawa H. 2001. Phenotype and function of murine peritoneal cavity macrophage derived dendritic cells using growth factors. J Vet Med Sci 64:813–820;2002.

    Article  Google Scholar 

  77. Makala LHC, Zayatin B, Kamada T, Seyha S, Ribas JLL, Fujisaki K, Mikami T, Suzuki N, Nagasawa H. Characterization of CD11+ dendritic cell populations in spleens of mice infected withToxoplasma gondii. J Protozool Res 2000b, in press.

  78. Makala LHC. Isolation and characterization of pig Peyer's patch dendritic cells, PhD thesis, University of Bristol, Bristol, 1996.

    Google Scholar 

  79. Maric I, Holt PG, Perdue MH, Bienenstock J. Class II MHC antigen (Ia)-bearing dendritic cells in the epithelium of the rat intestine. J Immunol 156:1408–1414;1996.

    PubMed  Google Scholar 

  80. Mason DW, Dallman M, Barclay AN. Graft-versus-host disease induces expression of Ia antigen in rat epidermal cells and gut epithelium. Nature 293:150–151;1981.

    PubMed  Google Scholar 

  81. Maus MV, Riley JL, Kwok WW, Nepom GT, June CH. HLA tetramer-based artificial antigen-presenting cells for stimulation of CD4+ T cells. Clin Immunol 106:16–22;2003.

    PubMed  Google Scholar 

  82. Mayrhofer G, Spargo LD. Subcellular distribution of class II major histocompatibility antigens in enterocytes of the human and rat small intestine. Immunol Cell Biol 67:251–260;1989.

    PubMed  Google Scholar 

  83. McCarron RM, Racke M, Spatz M, McFarlin DE. Cerebral vascular endothelial cells are effective targets for in vitro lysis by encephalitogenic T lymphocytes. J Immunol 147:503–508;1991.

    PubMed  Google Scholar 

  84. McCarron RM, Wang L, Cowan EP, Spatz M. Class II MHC antigen expression by cultured human cerebral vascular endothelial cells. Brain Res 566:325–328;1991.

    Article  PubMed  Google Scholar 

  85. McMenamin C, Holt PG. The natural immune response to inhaled soluble protein antigens involves major histocompatibility complex (MHC) class I-restricted CD8+ T cell-mediated but MHC class II-restricted CD4+ T cell-dependent immune deviation resulting in selective suppression of immunoglobulin E production. J Exp Med 178:889–899;1993.

    Article  PubMed  Google Scholar 

  86. McMenamin C, Pimm C, McKersey M, Holt PG. Regulation of IgE responses to inhaled antigen in mice by antigen-specific gamma delta T cells. Science 265:1869–1871;1994.

    PubMed  Google Scholar 

  87. Mellman I, Steinman RM. Dendritic cells: Specialized and regulated antigen processing machines. Cell 106:255–258;2001.

    Article  PubMed  Google Scholar 

  88. Mukasa A, Lahn M, Pflum EK, Born W, O'Brien RL. Evidence that the same gamma delta T cells respond during infection-induced and autoimmune inflammation. J Immunol 159:5787–5794;1997.

    PubMed  Google Scholar 

  89. Nadler PI, Klingenstein RJ, Hodes RJ. Ontogeny of murine accessory cells: Ia antigen expression and accessory cell function in in vitro primary antibody responses. J Immunol 125:914–920;1980.

    PubMed  Google Scholar 

  90. Nagura H, Ohtani H, Masuda T, Kimura M, Nakamura S. HLA-DR expression on M cells overlying Peyer's patches is a common feature of human small intestine. Acta Pathol Jpn 41:818–823;1991.

    PubMed  Google Scholar 

  91. Neutra MR, Mantis NJ, Kraehenbuhl JP. Collaboration of epithelial cells with organized mucosal lymphoid tissues. Nat Immunol 2:1004–1009;2001.

    PubMed  Google Scholar 

  92. Nicoletti C. Unsolved mysteries of intestinal M cells. Gut 47:735–739;2000.

    Article  PubMed  Google Scholar 

  93. Nussenzweig MC, Steinman RM, Gutchinov B, Cohn ZA. Dendritic cells are accessory cells for the development of anti-trinitrophenyl cytotoxic T lymphocytes. J Exp Med 152:1070–1084;1980a.

    Article  PubMed  Google Scholar 

  94. Nussenzweig MC, Steinman RM. Contribution of dendritic cells to stimulation of the murine syngeneic mixed leukocyte reaction. J Exp Med 151:1196–1212;1980b.

    Article  PubMed  Google Scholar 

  95. Onori P, Franchitto A, Sferra R, Vetuschi A, Gaudio E. Peyer's patches epithelium in the rat: A morphological, immunohistochemical, and morphometrical study. Dig Dis Sci 46:1095–1104;2001.

    Article  PubMed  Google Scholar 

  96. Owen JJ, Wright DE, Habu S, Raff MC, Cooper MD. Studies on the generation of B lymphocytes in fetal liver and bone marrow. J Immunol 118:2067–2072;1977.

    PubMed  Google Scholar 

  97. Owen RL, Apple RT, Bhalla DK. Morphometric and cytochemical analysis of lysosomes in rat Peyer's patch follicle epithelium: Their reduction in volume fraction and acid phosphatase content in M cells compared to adjacent enterocytes. Anat Rec 216:521–527;1986a.

    Article  PubMed  Google Scholar 

  98. Owen RL, Nemanic P. Antigen processing structures of the mammalian intestinal tract: An SEM study of lymphoepithelial organs; in Scanning Electron Microscopy, SEM Inc., AMFO Hare, USA, Vol. II, 1978.

    Google Scholar 

  99. Owen RL, Pierce NF, Apple RT, Cray WC Jr. M cell transport of Vibrio cholerae from the intestinal lumen into Peyer's patches: A mechanism for antigen sampling and for microbial transepithelial migration. J Infect Dis 153:1108–1118;1986b.

    PubMed  Google Scholar 

  100. Owen RL. Sequential uptake of horseradish peroxidase by lymphoid follicle epithelium of Peyer's patches in the normal unobstructed mouse intestine: An ultrastructural study. Gastroenterology 72:440–451;1977.

    PubMed  Google Scholar 

  101. Pavli P, Hume DA, Van De Pol E, Doe WF. Dendritic cells, the major antigen-presenting cells of the human colonic lamina propria. Immunology 78:132–141;1993.

    PubMed  Google Scholar 

  102. Pavli P, Woodhams CE, Doe WF, Hume DA. Isolation and characterization of antigen-presenting dendritic cells from the mouse intestinal lamina propria. Immunology 70:40–47;1990.

    PubMed  Google Scholar 

  103. Pober JS, Collins T, Gimbrone MA Jr, Cotran RS, Gitlin JD, Fiers W, Clayberger C, Krensky AM, Burakoff SJ, Reiss CS. Lymphocytes recognize human vascular endothelial and dermal fibroblast Ia antigens induced by recombinant immune interferon. Nature 305:726–729;1983.

    Article  PubMed  Google Scholar 

  104. Pober JS, Gimbrone MA Jr, Cotran RS, Reiss CS, Burakoff SJ, Fiers W, Ault KA. Ia expression by vascular endothelium is inducible by activated T cells and by human gamma interferon. J Exp Med 157:1339–1353;1983.

    Article  PubMed  Google Scholar 

  105. Poussier P, Julius M. Thymus independent T cell development and selection in the intestinal epithelium. Annu Rev Immunol 12:521–553;1994.

    Article  PubMed  Google Scholar 

  106. Pugh CW, MacPherson GG, Steer HW. Characterization of non-lymphoid cells derived from rat peripheral lymph. J Exp Med 157:1758–1779;1983.

    Article  PubMed  Google Scholar 

  107. Regoli M, Borghesi C, Bertelli E, Nicoletti C. A morphological study of the lymphocyte traffic in Peyer's patches after an in vivo antigenic stimulation. Anat Rec 239:47–54;1994.

    Article  PubMed  Google Scholar 

  108. Rosenwasser LJ, Rosenthal AS. Adherent cell function in murine T lymphocyte antigen recognition. II. Definition of genetically restricted and nonrestricted macrophage functions in T cell proliferation. J Immunol 121:2497–2501;1978.

    PubMed  Google Scholar 

  109. Rosenwasser LJ, Rosenthal AS. Adherent cell function in murine T lymphocyte antigen recognition. I. A. macrophage-dependent T cell proliferation assay in the mouse. J Immunol 120:1991–1995;1978.

    PubMed  Google Scholar 

  110. Rugtveit J, Nilsen EM, Bakka A, Carlsen H, Brandtzaeg P, Scott H. Cytokine profiles differ in newly recruited and resident subsets of mucosal macrophages from inflammatory bowel disease. Gastroenterology 112:1493–1505;1997.

    PubMed  Google Scholar 

  111. Shortman K, Caux C. Dendritic cell development: Multiple pathways to nature's adjuvants. Stem Cells 15:409–419;1997.

    PubMed  Google Scholar 

  112. Smith PD, Janoff EN, Mosteller-Barnum M, Merger M, Orenstein JM, Kearney JF, Graham MF. Isolation and purification of CD14-negative mucosal macrophages from normal human small intestine. J Immunol Methods 202:1–11;1997.

    Article  PubMed  Google Scholar 

  113. Smith PD, Meng G, Shaw GM, Li L. Infection of gastrointestinal tract macrophages by HIV-1. J Leukoc Biol 62:72–77;1997.

    PubMed  Google Scholar 

  114. Sobhon P. The light and electron microscopic studies of Peyer's patches in non-germ free adult mice. J Morphol 135:457–481;1971.

    PubMed  Google Scholar 

  115. Spalding DM, Koopman WJ, Eldridge JH, McGhee JR, Steinman RM. Accessory cells in murine Peyer's patch. I. Identification and enrichment of a functional dendritic cell. J Exp Med 157:1646–1659;1983.

    Article  PubMed  Google Scholar 

  116. Steinman RM. The dendritic cell system and its role in immunogenicity. Annu Rev Immunol 9:271–296;1991.

    Article  PubMed  Google Scholar 

  117. Stingl G, Katz SI, Shevach EM, Wolff-Schreiner E, Green I. Detection of Ia antigens on Langerhans cells in guinea pig skin. J Immunol 120:570–578;1978.

    PubMed  Google Scholar 

  118. Stokes CR, Bailey M, Wilson AD. Immunology of the porcine gastro-intestinal tract. Vet Immunol Immunopathol 43:143–150;1994.

    Article  PubMed  Google Scholar 

  119. Stokes CR, Bailey M. The porcine gastrointestinal lamina propria: An appropriate target for mucosal immunisation? J Biotechnol 83:51–55;2000.

    Article  PubMed  Google Scholar 

  120. Stokes CR, Haverson K, Bailey M. Antigen presenting cells in the porcine gut. Vet Immunol Immunopathol 54:171–177;1996.

    Article  PubMed  Google Scholar 

  121. Szczepanik M, Anderson LR, Ushio H, Ptak W, Owen MJ, Hayday AC, Askenase PW. Gamma delta T cells from tolerized alpha beta T cell receptor (TCR)-deficient mice inhibit contact sensitivity-effector T cells in vivo, and their interferon-gamma production in vitro. J Exp Med 184:2129–2139;1996.

    Article  PubMed  Google Scholar 

  122. Szczepanik M, Nowak B, Askenase PW, Ptak W. Cross-talk between gamma delta T lymphocytes and immune cells in humoral response. Immunology 95:612–617;1998.

    Article  PubMed  Google Scholar 

  123. Thomas AK, Maus MV, Shalaby WS, June CH, Riley JL. A cell-based artificial antigen-presenting cell coated with anti-CD3 and CD28 antibodies enables rapid expansion and long-term growth of CD4 T lymphocytes. Clin Immunol 105:259–272;2002.

    Article  PubMed  Google Scholar 

  124. Unanue ER, Beller DI, Lu CY, Allen PM. Antigen presentation: Comments on its regulation and mechanism. J Immunol 132:1–5;1984.

    PubMed  Google Scholar 

  125. Viney JL, Mowat AM, O'Malley JM, Williamson E, Fanger NA. Expanding dendritic cells in vivo enhances the induction of oral tolerance. J Immunol 160:5815–5825;1998.

    PubMed  Google Scholar 

  126. Waraich T, Sarsfield P, Wright DH. The accessory cell populations in ulcerative colitis: A comparison between the colon and appendix in colitis and acute appendicitis. Hum Pathol 28:297–303;1997.

    Article  PubMed  Google Scholar 

  127. Wilcox CE, Baker D, Butter C, Willoughby DA, Turk JL. Differential expression of guinea pig class II major histocompatibility complex antigens on vascular endothelial cells in vitro and in experimental allergic encephalomyelitis. Cell Immunol 120:82–91;1989.

    Article  PubMed  Google Scholar 

  128. Wilders MM, Drexhage HA, Weltevreden EF, Mullink H, Duijvestijn A, Meuwissen SG. Large mononuclear Ia-positive veiled cells in Peyer's patches. I. Isolation and characterization in the rat, guinea-pig and pig. Immunology 48:453–460;1983.

    PubMed  Google Scholar 

  129. Wilders MM, Sminia T, Plesch BE, Drexhage HA, Weltevreden EF, Meuwissen SG. Large mononuclear Ia-positive veiled cells in Peyer's patches. II. Localization in rat Peyer's patches. Immunology 48:461–467;1983.

    PubMed  Google Scholar 

  130. Williams NA, Wilson AD, Bailey M, Bland PW, Stokes CR. Primary antigen-specific T-cell proliferative responses following presentation of soluble protein antigen by cells from the murine small intestine. Immunology 75:608–613;1992.

    PubMed  Google Scholar 

  131. Wilson AD, Bailey M, Williams NA, Stokes CR. The in vitro production of cytokines by mucosal lymphocytes immunized by oral administration of keyhole limpet hemocyanin using cholera toxin as an adjuvant. Eur J Immunol 21:2333–2339;1991.

    PubMed  Google Scholar 

  132. Wilson AD, Haverson K, Southgate K, Bland PW, Stokes CR, Bailey M. Expression of major histocompatibility complex class II antigens on normal porcine intestinal endothelium. Immunology 88:98–103;1996.

    Article  PubMed  Google Scholar 

  133. Woodhead VE, Binks MH, Chain BM, Katz DR. From sentinel to messenger: An extended phenotypic analysis of the monocyte to dendritic cell transition. Immunology 94:552–559;1998.

    Article  PubMed  Google Scholar 

  134. Yamamoto M, Rennert P, McGhee JR, Kweon MN, Yamamoto S, Dohi T, Otake S, Bluethmann H, Fujihashi K, Kiyono H. Alternate mucosal immune system: Organized Peyer's patches are not required for IgA responses in the gastrointestinal tract. J Immunol 164:5184–5191;2000.

    PubMed  Google Scholar 

  135. Yamanaka T, Straumfors A, Morton H, Fausa O, Brandtzaeg P, Farstad I. M cell pockets of human Peyer's patches are specialized extensions of germinal centers. Eur J Immunol 31:107–117;2001.

    Article  PubMed  Google Scholar 

  136. Zeitz M, Schieferdecker HL, James SP, Riecken EO. Special functional features of T-lymphocyte subpopulations in the effector compartment of the intestinal mucosa and their relation to mucosal transformation. Digestion 46:280–289;1990.

    PubMed  Google Scholar 

  137. Zeitz M, Schieferdecker HL, Ullrich R, Jahn HU, James SP, Riecken EO. Phenotype and function of lamina propria T lymphocytes. Immunol Res 10:199–206;1991.

    PubMed  Google Scholar 

  138. Zembala M, Uracz W, Ruggiero I, Mytar B, Pryjma J. Isolation and functional characteristics of FcR+ and FcR- human monocyte subsets. J Immunol 133:1293–1299;1984.

    PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Makala, L.H.C., Nishikawa, Y., Suzuki, N. et al. Immunology. J Biomed Sci 11, 130–141 (2004). https://doi.org/10.1007/BF02256556

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02256556

Key Words

Navigation