Skip to main content
Log in

Blood pressure and heart rate variability in autonomic disorders: a critical review

  • Review
  • Published:
Clinical Autonomic Research Aims and scope Submit manuscript

Abstract

Spectral analysis (SA) of blood pressure (BP) and heart rate (HR) fluctuations has been proposed as a unique approach to obtain a deeper insight into cardiovascular regulatory mechanisms in health and disease. A number of studies performed over the last 15 years have shown that autonomic influences are involved in the modulation of fast BP and HR fluctuations (with a period<1 min), particularly at frequencies between 0.2 and 0.4 Hz [high frequency (HF) region or respiratory frequency] and around 0.1 Hz [mid frequency (MF) region]. In patients with secondary or primary autonomic dysfunction, SA of BP and HR signals recorded at rest or during orthostatic challenge in a laboratory environment have shown the occurrence of a reduction in the power of MF and/or HF, BP and HR components. Such a reduction is associated or may even precede the clinical manifestation of autonomic neuropathy. However, the above results collected in standardized laboratory conditions cannot reflect the features of neural cardiovascular control during daily life in ambulant individuals with autonomic failure. To investigate this issue, SA techniques have been applied to 24 h beat-to-beat intra-arterial and non-invasive finger BP recordings obtained in elderly subjects and in pure autonomic failure patients, respectively. In these conditions, HR powers displayed a reduction over a wide range of frequencies (from 0.5 to below 0.01 Hz). Conversely, BP powers underwent a complex rearrangement characterized by a reduction in the power around 0.1 Hz and by an increase in the powers at the respiratory frequency and at frequencies below 0.01 Hz. Dynamic quantification of the sensitivity of the baroreceptor-heart rate reflex by combined analysis of systolic BP and pulse interval (i.e. the interval between consecutive systolic peaks) powers around 0.1 Hz (alpha technique) has shown that in elderly subjects, and even more so in pure autonomic failure patients, baroreflex sensitivity is markedly reduced over the 24 h, and is no longer characterized by its physiological day-night modulation. In conclusion, although in some instances SA of cardiovascular signals may fail to fully reflect the features of autonomic cardiovascular control, the evidence discussed clearly demonstrates that this approach represents a promising tool for a dynamic assessment of the early impairment of neural circulatory control in autonomic failure. This is particularly the case when these analyses are performed on 24 h continuous BP and HR recordings in ambulant subjects.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Littler WA, West MJ, Honour AJ, Sleight P. The variability of arterial pressure.Am Heart J 1978:95: 180–186.

    Google Scholar 

  2. Floras JS, Sleight P. The lability of blood pressure. In: Amery A, Fagard R, Lijnen P, Staessen J, eds.Hypertensive Cardiovascular Disease: Pathophysiology and Treatment. The Hague: Martinus Nijhoff, 1982; 104–117.

    Google Scholar 

  3. Mancia G, Ferrari A, Gregorini L et al. Blood pressure and heart rate variabilities in normotensive and hypertensive human beings.Circ Res 1983;53: 96–104.

    Google Scholar 

  4. Mancia G, Zanchetti A. Blood pressure variability. In: Zanchetti A, Tarazi RC, eds.Pathophysiology of Hypertension: Cardiovascular Aspects.Handbook of Hypertension, vol. 7. Amsterdam: Elsevier, 1986; 125–152.

    Google Scholar 

  5. Parati G, Mutti E, Omboni S, Mancia G. How to deal with blood pressure variability. In: Brunner H, Waeber B, eds.Ambulatory Blood Pressure Recording. New York: Raven Press, 1991; 71–99.

    Google Scholar 

  6. Hyndman BW, Kitney RI, Sayers BM. Spontaneous rhythms in physiological control systems.Nature 1971;233: 339–341.

    Google Scholar 

  7. Kay SM, Marple SL. Spectrum analysis—a modern perspective.Proc IEEE 1981;69: 1380–1419.

    Google Scholar 

  8. Akselrod S, Gordon D, Ubel FA, Shannon DC, Barger AC, Cohen RJ. Power spectrum analysis of heart rate fluctuation: a quantitative probe of beat-to-beat cardiovascular control.Science 1981;21: 220–223.

    Google Scholar 

  9. Appel ML, Berger RD, Saul JP, Smith JM, Cohen RJ. Beat to beat variability in cardiovascular variables: noise or music?J Am Coll Cardiol 1989;14: 1139–1148.

    Google Scholar 

  10. Di Rienzo M, Castiglioni P, Ramirez AJ, Mancia G, Pedotti A. Sequential spectral analysis of blood pressure and heart rate in humans and animals. In Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A, eds.Blood Pressure and Heart Rate Variability. Amsterdam: IOS Press, 1993; 24–38.

    Google Scholar 

  11. Malliani A, Lombardi F, Pagani M. Power spectrum analysis of heart rate variability: a tool to explore neural regulatory mechanisms.Br Heart J 1994;71: 1–2.

    Google Scholar 

  12. Parati G, Saul JP, Di Rienzo M, Mancia G. Spectral analysis of blood pressure and heart rate variability in evaluating cardiovascular regulation: a critical appraisalHypertension 1995;25: 1276–1286.

    Google Scholar 

  13. Spiers JP, Silke B, McDermott U, Shanks RG Harron DWG. Time and frequency domain assessment of heart rate variability: a theoretical and clinical appreciation.Clin Auton Res 1993;3: 145–158.

    Google Scholar 

  14. Kamath MV, Fallen EL. Power spectral analysis of heart rate variability: a noninvasive signature of cardiac autonomic function.Crit Rev Biomed Eng 1993:21: 245–311.

    Google Scholar 

  15. Malik M, Camm AJ. Heart rate variability and clinical cardiology.Br Heart J 1994;71: 3–6.

    Google Scholar 

  16. Malliani A, Pagani M, Lombardi F. Physiology and clinical implications of variability of cardiovascular parameters with focus on heart rate and blood pressure.Am J Cardiol 1994;73: 3C-9C.

    Google Scholar 

  17. Stein PK, Bosner MS, Kleiger RE, Conger BM. Heart rate variability: a measure of cardiac autonomic tone.Am Heart J 1994;127: 1376–1381.

    Google Scholar 

  18. Pomeranz B, Macaulay RJB, Caudill MA et al. Assessment of autonomic function in humans by heart rate spectral analysis.Am J Physiol 1985;248: H151-H153.

    Google Scholar 

  19. Akselrod S, Gordon D, Madwed JB, Snidman NC, Shannon DC, Cohen RJ. Hemodynamic regulation: investigation by spectral analysis.Am J Physiol 1985;249 (Heart Circ. 18): H867-H875.

    Google Scholar 

  20. Pagani M, Lombardi F, Guzzetti S et al. Power spectral analysis of heart rate and arterial pressure variabilities as a marker of sympatho-vagal interaction in man and conscious dog.Circ Res 1986;59: 178–193.

    Google Scholar 

  21. Saul JP, Berger RD, Albrecht P, Stein SP, Chen MH, Cohen RJ. Transfer function analysis of the circulation: unique insights into cardiovascular regulation.Am J Physiol 1991;261: H1231-H1245.

    Google Scholar 

  22. Hales S.Statistical Essays: Containing Haemastaticks. Vol. 2. London, Ihnys, Manby and Woodward, 1733

    Google Scholar 

  23. Koepchen HP. History of studies and concepts of blood pressure waves. In: Miyakawa K, Polosa C, Koepchen HP, eds.Mechanisms of Blood Pressure Waves. Berlin: Springer-Verlag, 1984; 3–23.

    Google Scholar 

  24. de Boer RW, Karemaker JM, Strackee J. Hemodynamic fluctuation and baroreflex sensitivity in humans: a beat-to-beat model.Am J Physiol 1987;253; H680-H689.

    Google Scholar 

  25. Peters J, Fraser C, Stuart RS, Baumgartner W, Robotham JL. Negative intrathoracic pressure decreases independently left ventricular filling and emptying.Am J Physiol 1989;257:H120-H131.

    Google Scholar 

  26. Peters J, Kindred MK, Robotham JL. Transient analysis of cardiopulmonary interactions. I. Diastolic events.J Appl Physiol 1988;64: 1506–1517.

    Google Scholar 

  27. Peters J, Kindred MK, Robotham JL., Transient analysis of cardiopulmonary interactions. II. Systolic events.J Appl Physiol 1988;64: 1518–1526.

    Google Scholar 

  28. Katona PG, Jih F. Respiratory sinus arrhythmia: noninvasive measure of parasympathetic cardiac control.J Appl Physiol 1975;39: 801–805.

    Google Scholar 

  29. Eckberg DL. Human sinus arrhythmia as an index of vagal cardiac outflow.J Appl Physiol 1983;54: 961–966.

    Google Scholar 

  30. Goldberger JJ, Ahmed MW, Parker MA, Kadish AH. Dissociation of heart rate variability from parasympathetic tone.Am J Physiol 1994;266: H2152-H2157.

    Google Scholar 

  31. Fouad FM, Tarazi RC, Ferrario CM, Fighaly S, Alicandri C, Assessment of parasympathetic control of heart rate by a non-invasive method.Am J Physiol 1984;246: H838-H842.

    Google Scholar 

  32. Bernardi L, Keller F, Sanders M et al. Respiratory sinus arrhythmia in the denervated human heart.J Appl Physiol 1989;67: 1447–1455.

    Google Scholar 

  33. Peñáz J. Mayer waves: history and methodology.Automedica 1978;2: 135–141.

    Google Scholar 

  34. Bernardi L, Leuzzi S, Radaelli A, Passino C, Johnston JA, Sleigh P. Low frequency spontaneous fluctuations of R-R interval and blood pressure in conscious humans: a baroreceptor or central phenomenon?Clin Sci 1994;87: 649–654.

    Google Scholar 

  35. Furlan R, Guzzetti S, Crivellaro W et al. Continuous 24-hour assessment of the neural regulation of systemic arterial pressure and RR variabilities in ambulant subjects.Circulation 1990;81: 537–547.

    Google Scholar 

  36. Parati G, Castiglioni P, Di Rienzo M, Omboni S, Pedotti A, Mancia G. Sequential spectral analysis of 24-hour blood pressure and pulse interval in humans.Hypertension 1990:16: 414–421.

    Google Scholar 

  37. Berger RD, Saul JP, Cohen RJ. Transfer function analysis of autonomic regulation. I. Canine atrial rate response.Am J Physiol 1989;256: H142-H152.

    Google Scholar 

  38. Saul JP, Berger RD, Chen MH, Cohen RJ. Transfer function analysis of autonomic regulation. II. Respiratory sinus arrhythmia.Am J Physiol 1989;256: H153-H161.

    Google Scholar 

  39. Burton AC. The range and variability of the blood flow in the human finger and the vasomotor regulation of body temperature.Am J Physiol 1939;127: 437–453.

    Google Scholar 

  40. Dutrey-Dupagne C, Girard A, Ulmann A, Elghozi JL. Effects of the converting enzyme inhibitor trandolapril on short-term variability of blood pressure in essential hypertension.Clin Auto Res 1991;1: 303–307.

    Google Scholar 

  41. Bannister R, Mathias CJ. Introduction and classification of autonomic disorders. In: Bannister R, Mathias CJ, eds.Autonomic Failure. A Textbook of Clinical Disorders of the Autonomic Nervous System. 3rd ed. Oxford: Oxford University Press, 1992; 1–12.

    Google Scholar 

  42. Bernardi L, Calciati A, Gratarola A, Battistin I, Fratino P, Finardi G. Heart rate-respiration relationship: computerized method for early assessment of cardiac autonomic damage in diabetic patients.Acta Cardiol 1986;41: 197–206.

    Google Scholar 

  43. Pagani M, Malfatto G, Pierini S et al. Spectral analysis of heart rate variability in the assessment of autonomic diabetic neuropathy.J Auton Nerv Syst 1988;23: 143–153.

    Google Scholar 

  44. Comi G, Natali Sora MG, Bianchi A et al. Spectral analysis of shortterm heart rate variability in diabetic patients.J Auton Nerv Syst 1990;30: S45-S49.

    Google Scholar 

  45. Bellavere F, Balzani I, De Masi G et al. Power spectral analysis of heart-rate variations improves assessment of diabetic cardiac autonomic neuropathy.Diabetes 1992;41: 633–640.

    Google Scholar 

  46. Bernardi L, Perlini S, Salvucci F et al. Does autonomic modulation explain heart rate variability in all conditions? In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A, eds.Blood Pressure and Heart Rate Variability. Amsterdam: IOS Press, 1993; 143–152.

    Google Scholar 

  47. Weise F, Heydenreich F. Power spectrum analysis of heart rate in diabetic patients: a marker of autonomic dysfunction. In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A, eds.Computer Analysis of Cardiovascular Signals. Amsterdam: IOS Press, 1995: 283–292.

    Google Scholar 

  48. Lishner M, Akselrod S, Mor Avi V, Oz O, Divon M Ravid M. Spectral analysis of heart rate fluctuations. A non-invasive, sensitive method for the early diagnosis of autonomic neuropathy in diabetes mellitus.J Auton Nerv Syst 1987;19: 119–125.

    Google Scholar 

  49. Axelrod S, Lishner M, Oz O, Bernheim J, Ravid M. Spectral analysis of fluctuations in heart rate: an objective evaluation of autonomic nervous control in chronic renal failure.Nephron 1987;45: 202–206.

    Google Scholar 

  50. Cloarec BL, Girard A, Houhou S, Grunfeld JP, Elghozi JL. Spectral analysis of short-term blood pressure and heart rate variability in uremic patients.Kidney Int 1992;37 (Suppl.): S14-S18.

    Google Scholar 

  51. Maayan C, Axelrod FB, Akselrod S, Carley DW, Shannon CD. Evaluation of autonomic dysfunction in familial dysautonomia by power spectral analysis.J. Auton Nerv Syst 1987;21: 51–58.

    Google Scholar 

  52. Man in 't Veld AJ, Boomsma F, Moleman P, Schalekamp MADH. Congenital dopamine β-hydroxylase deficiencyLancet 1987; i: 183–187.

    Google Scholar 

  53. Kingwell BA, Thompson JM, Kaye DM, McPherson GA, Jennings GL, Esler MD. Heart rate spectral analysis, cardiac norepinephrine spillover, and muscle sympathetic nerve activity during human sympathetic nervous activation and failure.Circulation 1994;90: 234–240.

    Google Scholar 

  54. Guzzetti S, Iosa D, Pecis M, Bonura L, Prosdocimi M, Malliani A. Impaired heart rate variability in patients with chronic Chagas' disease.Am Heart J 1991;121: 1727–1734.

    Google Scholar 

  55. Inoue K, Miyake S, Kumashiro M, Ogata H, Yoshimura O. Power spectral analysis of heart rate variability in traumatic quadriplegic humans.Am J Physiol 1990;258: H1722-H1726.

    Google Scholar 

  56. Inoue K, Miyake S, Kumashiro M, Ogata H, Ueta T, Akatsu T. Power spectral analysis of blood pressure variability in traumatic quadriplegic humans.Am J Physiol 1991;260: H842-H847.

    Google Scholar 

  57. Guzzetti S, Cogliati C, Broggi C et al. Infuences of neural mechanisms on heart period and arterial pressure variabilities in quadriplegic patients.Am J Physiol 1994;266: H1112-H1120.

    Google Scholar 

  58. Koh J, Brown TE, Beightol LA, Ha CY, Eckberg DL. Human autonomic rhythms: vagal cardiac mechanisms in tetraplegic subjects.J Physiol 1994;474: 483–495.

    Google Scholar 

  59. Vallbona C, Cardus D, Spencer WA Hoff HE. Patterns of sinus arrhythmia in patients with lesions of the central nervous system.Am J Cardiol 1965;16:379–389.

    Google Scholar 

  60. Lowensohn RI, Weiss M, Hon EH. Heart-rate variability in braindamaged adults.Lancet 1977;i: 626–628.

    Google Scholar 

  61. Moriguchi A, Otsuka A, Kohara K, Mikami H, Ogihara T. Evaluation of orthostatic hypotension using power spectral analysis.Am J Hypertens 1993;6: 198–203.

    Google Scholar 

  62. Barron SA, Rogovski Z, Hemli J. Autonomic consequences of cerebral hemisphere infarction.Stroke 1994;25:113–116.

    Google Scholar 

  63. Novak V, Novak P, de Marchie M, Schondorf R. The effect of severe brainstem injury on heart rate and blood pressure oscillations.Clin Auton Res 1995;5: 24–30.

    Google Scholar 

  64. Kita Y, Ishise J, Yoshita Y et al. Power spectral analysis of heart rate and arterial blood pressure oscillation in brain-dead patients.J Auton Nerv Syst 1993;44: 101–107.

    Google Scholar 

  65. Duncan G, Johnson RH, Lambie DG, Whiteside EA. Evidence of vagal neuropathy in chronic alcoholics.Lancet 1980;ii: 1053–1057.

    Google Scholar 

  66. Bernardi L, Ricordi L, Calciati A et al. Evidence of cardiac autonomic disease in chronic alcoholics by computerized study of heart rate-respiration relationship.Cardiologia 1986;31: 721–724.

    Google Scholar 

  67. O'Brien IAD, O'Hare P, Corrall RJM. Heart rate variability in healthy subjects: effect of age and the derivation of normal ranges for tests of autonomic function.Br Heart J 1986;55: 348–354.

    Google Scholar 

  68. Schwartz JB, Gibb WJ, Tran T. Aging effects on heart rate variation.J Gerontol 1991;46: M99-M106.

    Google Scholar 

  69. Murata K, Landigran PJ, Araki S. Effects of age, heart rate, gender, tobacco and alcohol ingestion on R-R interval variability in human ECG.J Auton Nerv Syst 1992;37: 199–206.

    Google Scholar 

  70. Khoury S, Yarows SA, O'Brien TK, Sowers JR. Ambulatory blood pressure monitoring in a nonacademic setting: effects of age and sex.Am J Hypertens 1992;5: 616–623.

    Google Scholar 

  71. Drayer JIM, Weber MA, De Young JL, Wyle FA. Circadian blood pressure patterns in ambulatory hypertensive patients: effects of age.Am J Med 1982;73: 493–499.

    Google Scholar 

  72. Rowlands DB, Stallard TJ, Littler W. Continuous ambulatory monitoring of blood pressure and assessment of cardiovascular reflexes in the elderly hypertensive.J Hypertens 1984;2: 615–622.

    Google Scholar 

  73. Zito M, Parati G, Omboni S et al. Effect of aging on blood pressure variability.J Hypertens 1991;9 (suppl. 6): S328-S329.

    Google Scholar 

  74. Simpson DM, Wicks R. Spectral analysis of heart rate indicates reduced baroreceptor-related heart rate variability in elderly persons.J Gerontol 1988;43: M21-M24.

    Google Scholar 

  75. Kurkushko OV, Shatilo VB, Plachinda YI, Shatilo TV. Autonomic control of cardiac chronotropic function in man as a function of age: assessment by power spectral analysis of heart rate variability.J Auton Nerv Syst 1991;32: 191–198.

    Google Scholar 

  76. Veerman DP, Imholz BPM, Wieling W, Karemaker JM, van Montfrans GA. Effects of aging on blood pressure variability in resting conditions.Hypertension 1994;24: 120–130.

    Google Scholar 

  77. Shannon DC, Carley DW, Benson H. Aging of modulation of heart rate.Am J Physiol 1987;253: H874-H877.

    Google Scholar 

  78. Lipsitz LA, Mietus J, Moody GB, Goldberger AL. Spectral characteristics of heart rate variability before and during postural tilt. Relations to aging and risk of syncope.Circulation 1990;81: 1803–1810.

    Google Scholar 

  79. Ryan SM, Goldberger AL, Ruthazer R, Mietus J, Lipsitz LA. Spectral analysis of heart rate dynamics in elderly persons with postprandial hypotension.Am J Cardiol 1992;69: 201–205.

    Google Scholar 

  80. Lipsitz LA, Ryan SM, Parker JA, Freeman R, Wei JY, Goldberger AL. Hemodynamic and autonomic nervous system responses to mixed meal ingestion in healthy young and old subjects and dysautonomic patients with postprandial hypotension.Circulation 1993;87: 391–400.

    Google Scholar 

  81. Yo Y, Nagano M, Nagano N et al. Effects of age and hypertension on autonomic nervous regulation during passive head-up tilt.Hypertension 1994;23 (suppl. I): I-82–I-86.

    Google Scholar 

  82. Bradbury S, Eggleston C. Postural hypotension.Am Heart J 1925;1: 73–86.

    Google Scholar 

  83. Shy GM, Drager GA. A neurological syndrome associated with orthostatic hypotension.Arch Neurol 1960;3: 511–527.

    Google Scholar 

  84. Mancia G, Di Rienzo M, Parati G. Ambulatory blood pressure monitoring in hypertension research and clinical practice.Hypertension 1993;21: 510–524.

    Google Scholar 

  85. Di Rienzo M, Castiglioni P, Mancia G, Parati G, Pedotti A. 24 h sequential spectral analysis of arterial blood pressure and pulse interval in free-moving subjects.IEEE Trans Biomed Eng 1989;36: 1066–1075.

    Google Scholar 

  86. Parati G, Di Rienzo M, Omboni S, Castiglioni P, Frattola A, Mancia G. Spectral analysis of 24h blood pressure recordings.Am J Hypertens 1993;6:188S-193S.

    Google Scholar 

  87. Di Rienzo M, Parati G, Castiglioni P, Mancia G, Pedotti A. The wide band spectral analysis: a new insight into modulation of blood pressure, heart rate and baroreflex sensitivity. In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A, eds.Computer Analysis of Cardiovascular Signals. IOS Press: Amsterdam, 1995: 67–74.

    Google Scholar 

  88. Persson PB, Ehmke H, Köhler WW, Kirchheim HR. Identification of major slow blood pressure oscillations in conscious dogs.Am J Physiol 1990;259: H1050-H1055.

    Google Scholar 

  89. Di Rienzo M, Parati G, Castiglioni P et al. Role of sinoaortic afferents in modulating blood pressure and pulse interval spectral characteristics in unanesthetized cats.Am J Physiol 1991;261 (Heart Circ.30): H1811-H1818.

    Google Scholar 

  90. Kobayashi M, Musha T. 1/f fluctuations of heartbeat period.IEEE Trans Biomed Eng 1982;29: 456–457.

    Google Scholar 

  91. Saul JP, Albrecht P, Berger RD, Cohen RJ. Analysis of long term heart rate variability: methods, 1/f scaling and implications.Comp Cardiol 1987;14: 419–422.

    Google Scholar 

  92. Castiglioni P, Frattola A, Parati G, Di Rienzo M. 1/f modelling of blood pressure and heart rate spectra: relations to ageing. In: Morucci JP, Plonsey R, Coatrieux JL, Laxminarayan S, eds.Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society. Paris: IEEE Engineering in Medicine and Biology Society, 1992; 465–466.

    Google Scholar 

  93. Marsh DJ, Osborn JL, Cowley AWJ. 1/f fluctuations in arterial pressure and regulation of renal blood flow in dogs.Am J Physiol 1990;258: F1394-F1400.

    Google Scholar 

  94. Wagner CD, Persson PB. Two ranges in blood pressure power spectrum with different 1/f characteristics.Am J Physiol 1994;267: H449-H454.

    Google Scholar 

  95. Musha T. 1/f fluctuations of the biological rhythm. In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A eds.Computer Analysis of Cardiovascular Signals. Amsterdam: IOS Press, 1995; 81–94.

    Google Scholar 

  96. Gardner M. White and brown music, fractal curves and 1/f fluctuations.Sci Am 1978;238: 16–32.

    Google Scholar 

  97. Musha T, Katsurai K, Teramachi Y. Fluctuations of human tapping intervals.IEEE Trans Biomed Eng 1985;32: 578–582.

    Google Scholar 

  98. Musha T, Takeuchi H, Inoue K. 1/f fluctuations in the spontaneous spike discharge intervals of a giant snail neuron.IEEE Trans Biomed Eng 1983;30: 194–197.

    Google Scholar 

  99. Di Rienzo M, Castiglioni P, Parati G, Mancia G, Pedotti A. Effects of sino-aortic denervation on spectral characteristics of blood pressure and pulse interval variability: a wide-band approach.Med Biol Eng Comput 1995; in press.

  100. Parati G, Di Rienzo M, Castiglioni P et al. Daily-life baroreflex modulation: new perspectives from computer analysis of blood pressure and heart rate variability. In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A, eds.Computer Analysis of Cardiovascular Signals. Amsterdam: IOS Press, 1995; 209–218.

    Google Scholar 

  101. Robbe HWJ, Mulder LJM, Rüddel H, Langewitz WA, Veldman JBP, Mulder G. Assessment of baroreceptor reflex sensitivity by means of spectral analysis.Hypertension 1987;10: 538–543.

    Google Scholar 

  102. Pagani M, Somers V, Furlan R et al. Changes in autonomic regulation induced by physical training in mild hypertension.Hypertension 1988;12: 600–610.

    Google Scholar 

  103. Parati G, Omboni S, Frattola A, Di Rienzo M, Zanchetti A, Mancia G. Dynamic evaluation of the baroreflex in ambulant subjects. In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A, eds.Blood Pressure and Heart Rate Variability. Amsterdam: IOS Press, 1993; 123–137.

    Google Scholar 

  104. Frattola A, Parati G Di Rienzo M, Castiglioni P, Pedotti A, Mancia G. Blood pressure and heart rate variability in the elderly: evaluation by computer analysis of ambulatory 24 hour intra-arterial recordings.High Blood Press 1994;3: 151–157.

    Google Scholar 

  105. Parati G, Frattola A, Di Rienzo M, Castiglioni P, Pedotti A, Mancia G. Effects of aging on 24-h dynamic baroreceptor control of heart rate in ambulant subjects.Am J Physiol 1995;268: H1606-H1612.

    Google Scholar 

  106. Wesseling KH, Settels JJ, Wieling W, van Montfrans GA, Karemaker JM. The baromodulation hypothesis, baroreflex resetting and 1/f blood pressure spectra. In: Di Rienzo M, Mancia G, Parati G, Pedotti A, Zanchetti A, edsComputer Analysis of Cardiovascular Signals. Amsterdam: IOS Press, 1995; 105–118.

    Google Scholar 

  107. Imholz BPM, Langewouters GJ, van Montfrans GA et al. Feasibility of ambulatory, continous 24-hour finger arterial pressure recording.Hypertension 1993;21: 65–73.

    Google Scholar 

  108. Omboni S, Smit AAJ, Wieling W. Twenty four hour continuous non-invasive finger blood pressure monitoring: a novel approach to the evaluation of treatment in patients with autonomic failureBr Heart J 1995;73: 290–292.

    Google Scholar 

  109. Wesseling KH, de Wit B, Settels JJ, Klawer WH On the indirect registration of finger blood pressure after Peñáz.Funkt Biol Med 1982;1:245–250.

    Google Scholar 

  110. Parati G, Casadei R, Groppelli A, Di Rienzo M, Mancia G. Comparison of finger and intra-arterial blood pressure monitoring at rest and during laboratory testing.Hypertension 1989;13: 647–655.

    Google Scholar 

  111. Imholz BPM, Wieling W, Langewouters GJ, van Montfrans GA. Continuous finger arterial pressure: utility in the cardiovascular laboratory.Clin Auton Res 1991;1:43–53.

    Google Scholar 

  112. Peñáz J. Photoelectric measurement of blood pressure, volume and flow in the finger. In: Albert A, Vogt W, Helbig W, edsDigest of the 10th International Conference on Medical and Biological Engineering. Dresden: International Federation for Medical and Biological Engineering, 1973; 104.

    Google Scholar 

  113. Omboni S, Parati G, Frattola A et al. Spectral and sequence analysis of finger blood pressure variability. Comparison with analysis of intra-arterial recordings.Hypertension 1993;22: 26–33.

    Google Scholar 

  114. Omboni S, Parati G, Di Rienzo M et al. 24h blood pressure variability in ambulant subjects: evaluation by continuous non-invasive finger blood pressure monitoring.Eur Heart J 1994;15 (abstract suppl.): 290 (Abstract).

    Google Scholar 

  115. Mann S, Altman DG, Raftery EB, Bannister R. Circadian variation of blood pressure in autonomic failure.Circulation 1983;68: 477–483.

    Google Scholar 

  116. Tulen JHM, Man in't Veld AJ, van Steenis HG, Mechelse K. Sleep patterns and blood pressure variability in patients with pure autonomic failure.Clin Auton Res 1991;1: 309–315.

    Google Scholar 

  117. Tochikubo O, Miyazaki N, Kaneko Y. Relationship between 24-hour arterial pressure and heart rate variation in normotensives, hypertensives and patients with Shy-Drager syndrome.Jpn Circ J 1987;51: 485–494.

    Google Scholar 

  118. Omboni S, Veerman DP, Parati G et al. 24 hour blood pressure variability in pure autonomic failure assessed by continuous non invasive recording.J Hypertens 1994;12 (suppl 3)S106 (Abstract).

    Google Scholar 

  119. Saul JP, Rea RF, Eckberg DL, Berger RD, Cohen RJ. Heart rate and muscle sympathetic nerve variability during reflex changes of autonomic activity.Am J Physiol 1990;258: H713-H721.

    Google Scholar 

  120. Arai Y, Saul JP, Albrecht P et al. Modulation of cardiac autonomic activity during and immediately after exercise.Am J Physiol 1989;256: H132-H141.

    Google Scholar 

  121. Daffonchio A, Franzelli C, Di Rienzo M et al. Effect of sympathectomy on blood pressure variability in the conscious rat.J Hypertens 1991;9 (suppl. 6): S70-S71.

    Google Scholar 

  122. Cerutti C, Gustin MP, Paultre CZ et al Autonomic nervous system and cardiovascular variability in rats: a spectral analysis approach.Am J Physiol 1991;261; H1292-H1299.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Omboni.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Omboni, S., Parati, G., Di Rienzo, M. et al. Blood pressure and heart rate variability in autonomic disorders: a critical review. Clinical Autonomic Research 6, 171–182 (1996). https://doi.org/10.1007/BF02281905

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02281905

Keywords

Navigation