Skip to main content
Log in

Artificial neural network detects changes in electro-encephalogram power spectrum of different sleep-wake states in an animal model of heat stress

  • Published:
Medical and Biological Engineering and Computing Aims and scope Submit manuscript

Abstract

An effective application is presented of a back-propagation artificial neural network (ANN) in differentiating electro-encephalogram (EEG) power spectra of stressed and normal rats in three sleep-wakefulness stages. The rats were divided into three groups, one subjected to acute heat stress, one subjected to chronic heat stress and one a handling control group. The polygraphic sleep recordings were performed by simultaneous recording of cortical EEG, electro-oculogram (EOG) and electromyogram (EMG) on paper and in digital form on a computer hard disk. The preprocessed EEG signals (after removal of DC components and reduction of base-line movement) were fragmented into 2s artifact-free epochs for the calculation of power spectra. The slow-wave sleep (SWS), rapid eye movement (REM) sleep and awake (AWA) states were analysed separately. The power spectrum data for all three sleep-wake states in the three groups of rats were tested by a back-propagation ANN. The network contained 60 nodes in the input layer, weighted from power spectrum data from 0 to 30 Hz, 18 nodes in the hidden layer and an output node. The ANN was found effective in differentiating the EEG power spectra from stressed to normal spectral patterns following acute (92% in SWS, 85.5% in REM sleep, 91% in AWA state) as well as chronic heat exposure (95.5% in SWS, 93.8% in REM sleep, 98.5% in AWA state).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Agarwal, R., andGotman, J. (2001): ‘Computer-assisted sleep staging’,IEEE Trans. Biomed. Eng.,48, pp. 1412–1423

    Article  Google Scholar 

  • Al-Nashash, H. A. M. (1995): ‘A dynamic Fourier series for the compression of ECG using FFT and adaptive coefficient estimate’,Med. Eng. Phys.,17, pp. 197–203

    Article  Google Scholar 

  • Cervós-Navarro, J., Sharma, H. S., Westman, J., andBongcam-Rudloff, E. (1998): ‘Glial reaction in the central nervous system following heat stress’, inSharma, H. S., andWestman, J. (Eds): ‘Progress in brain research’, vol. 115 (Elsevier, Amsterdam, 1998), pp. 241–274

    Google Scholar 

  • Chen, J. D. Z., Lin, Z., Wu, Q., andMcCallum, R. W. (1995): ‘Non-invasive identification of gastric contractions from surface electrogastrogram using backpropagation neural networks’,Med. Eng. Phys. 17, pp. 219–225

    Google Scholar 

  • Dey, P. K. (2000): ‘Involvement of endogenous opiates in heat stress’,Biomedicine,20, pp. 143–148

    Google Scholar 

  • Dubois, M., Sato, S., Lees, D. E., Bull, J. M., Smith, R., White, B. G., Moore, H., andMacnamara, T. E. (1980): ‘Electroencephalographic changes during whole body hyperthermia in humans’,Electroenceph. Clin. Neurophysiol.,50, pp. 486–495

    Article  Google Scholar 

  • Goel, V., Brambrink, A. M., Baykal, A., Koeler, R. C., Hanley, D. F., andThakor, N. V. (1996): ‘Dominant frequency analysis of EEG reveals brain's response during injury and recovery’,IEEE Trans. Biomed. Eng.,43, pp. 1083–1092

    Google Scholar 

  • Hassoun, H. M. (1998): ‘Fundamentals of artificial neural networks’ (Prentice-Hall of India Private Limited, New Delhi, 1998), pp. 35–56

    Google Scholar 

  • Jandó, G., Seigel, R. M., Horváth, Z., andBuzáki, G. (1993): ‘Pattern recognition of the electroencephalogram by artificial neural networks’,Electroenceph. Clin. Neurophysiol.,86, pp. 100–109

    Article  Google Scholar 

  • Jervis, B. W., Coelho, M., andMorgan, G. W. (1989): ‘Spectral analysis of EEG responses’,Med. Biol. Eng. Comput.,27, pp. 230–238

    Google Scholar 

  • Judd, L. L., Britton, K. T., andBraff, D. L. (1994): ‘Mental disorders’ inIsselbacher, K. J.,et al. (Eds): ‘Harrison's principles of internal medicine’, 13th edn, Part 14.4, vol. 2 (McGraw Inc., New York, 1994), chap, 389, pp. 2400–2419

    Google Scholar 

  • Kulkarni, P. K., Kumar, V., andVerma, H. K. (1997): ‘Diagnostic acceptability of FFT-based ECG data compression’,J. Med. Eng. Tech.,21, pp. 185–189

    Google Scholar 

  • Lin, S. L., Tasi, Y. J., andLiou, C. Y. (1993): ‘Conscious mental tasks and their EEG signals’,Med. Biol. Eng. Comput.,31, pp. 421–425

    Google Scholar 

  • Mayer, J. S., andHanda, J. (1967): ‘Cerebral blood flow and metabolism during experimental hyperthermia’,Minn. Med.,50, pp. 33–44

    Google Scholar 

  • Morimoto, T., Nagao, H., Sano, N., Takahashi, M., andMatsuda, H. (1991): ‘Electroencephalographic study of rat hyperthermic seizures’,Epilepsia,32, pp. 289–293

    Google Scholar 

  • Nielsen, B., Hyldig, T., Bidstrup, F., Gonzalez-Alonso, J., andChristoffersen, G. R. (2001): ‘Brain activity and fatigue during prolonged exercise in the heat’,Pflugers. Archiv.,442, pp. 41–48

    Article  Google Scholar 

  • O'Boyle, D. J., Choi, E. W. K., Conroy, G., andTurega, M. (1991): ‘Learned classification of EEG power spectra using a neural network’,J. Physiol., Proc. Physiol. Society, Shaffield Meeting,438, p. 345

    Google Scholar 

  • Rao, V., andRao, H. (1996): ‘C++ neural networks and fuzzy logic’, 1st edn (BPB Publications, New Delhi, 1996), pp. 123–176

    Google Scholar 

  • Rosse, R. B., Warden, D. L., andMorihisa, J. M. (1989): ‘Applied electrophysiology’, inKaplan, H. I., andSadock, B. J. (Eds): ‘Comprehensive textbook of psychiatry’, 5th edn, vol. 1 (Williams and Wilkins, Baltimore, 1989), chap. 1.8, pp. 74–85

    Google Scholar 

  • Rumelhart, D. E., andMcClelland, J. L. (1986): ‘On learning the past tense of English verbs’, inMcClelland, J. L., andRumelhart, D. E. (Eds): ‘Parellel distributed processing: Explorations in the microstructure of cognition’, vol. 2 (M. I. T. Press, Cambridge MA, 1986), pp. 216–268

    Google Scholar 

  • Rumelhart, D. E., Hinton, G. E., andWilliams, R. J. (1986): ‘Learning representations by back-propagating errors’,Nature,323, pp. 533–536

    Article  Google Scholar 

  • Sarbadhikari, S. N., andRay, A. K. (1994): ‘Identifying EEG power spectra of depressed rats using a neural network’, inReddy, D. C. (Ed.): ‘Recent advances in biomedical engineering’ (Tata McGraw-Hill, New Delhi, 1994), pp. 76–79

    Google Scholar 

  • Sarbadhikari, S. N. (1995): ‘A neural network confirms that physical exercise reverses EEG changes in depressed rats’,Med. Eng. Phys.,17, pp. 579–582

    Article  Google Scholar 

  • Sarbadhikari, S. N., Dey, S., andRay, A. K. (1996): ‘Chronic exercise alters EEG power spectra in an animal model of depression’,Ind. J. Physiol. Pharmacol.,40, pp. 47–57

    Google Scholar 

  • Sharma, H. S., Westman, J., andNyberg, F. (1998): ‘Pathophysiology of brain edema and cell changes following hyperthermic brain injury’, inSharma, H. S., andWestman, J. (Eds): ‘Progress in brain research’, vol. 115 (Elsevier, Amsterdam, 1998), pp. 351–412

    Google Scholar 

  • Sirne, R. O., Isaacson, S. I., andD'Attellis, C. E. (1999): ‘A data-reduction process for long-term EEGs’,IEEE Eng. Med. Biol., pp. 56–61

  • Stearns, S. D., andDavid, R. A. (1988): ‘Signal processing algorithms’ (Prentice Hall of India Inc., Englewood Cliffs, New Jersy, 1988)

    Google Scholar 

  • Villiers, J. D., andBarnard, E. (1992): ‘Backpropagation neural nets with one and two hidden layers’,IEEE Trans. Neural Netw.,4, pp. 136–141

    Google Scholar 

  • Webber, W. R. S., Lesser, R. P., Richardson, R. T., andWilson, K. (1996): ‘An approach to seizure detection using an artificial neural network’,Electroenceph. Clin. Neurophysiol. 98, pp. 250–272

    Google Scholar 

  • Zurada, J. M. (1997): ‘Introduction to artificial neural network systems’ (West Publishing Company, St. Paul, MN, 1997), pp. 163–250.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. K. Sinha.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sinha, R.K. Artificial neural network detects changes in electro-encephalogram power spectrum of different sleep-wake states in an animal model of heat stress. Med. Biol. Eng. Comput. 41, 595–600 (2003). https://doi.org/10.1007/BF02345323

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02345323

Keywords

Navigation