Skip to main content
Log in

Model parameter estimation and analysis: Understanding parametric structure

  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

We developed three algorithms to facilitate an analysis of the parameter combinations (PASS points) that fit experimental data to a desired degree of accuracy. The clustering algorithm separates PASS points into clusters (PASS clusters) as a preliminary step for the following geometrical parametric analyses. The PASS region reconstruction algorithm defines the space of a PASS cluster to allow further parametric structural analysis. The feasible parameter space expansion algorithm produces a complete PASS cluster to be used for model predictions to evaluate the effects of variability and uncertainty. These algorithms are demonstrated using two pharmacokinetic models; a single compartment model for procainamide and a three-compartment physiologically based model for benzene. We found a more thorough representation of the parameter space than previously considered. Thus, we obtained model predictions that describe better the variability in population responses. In addition, we also parametrically identified a subpopulation that may have a higher risk for cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Auslander, D.M.; Spear, R.C.; Young, G.E. A simulation based approach to the design of control systems with uncertain parameters. ASME J. Dynamic Syst. Measurement, Control 104:20–26; 1982.

    Google Scholar 

  2. Bois, F.B.; Woodruff, T.J.; Spear, R.C. Comparison of three physiologically based pharmacokinetic models of benzene disposition. Toxicol. Appl. Pharmacol. 110:79–88; 1991.

    Article  CAS  PubMed  Google Scholar 

  3. Bois, F.B.; Paxman, D. An analysis of exposure rate effects for benzene using a physiologically based pharmacokinetic model. Reg. Toxicol. Appl. Pharmacol. 15:122–136; 1992.

    CAS  Google Scholar 

  4. Edward, A.W.F. Likelihood. London: Cambridge University Press; 1972.

    Google Scholar 

  5. Kalbfleisch, J.G. Probability and statistical inference, vol 2. New York: Springer-Verlag; 1985.

    Google Scholar 

  6. Koch-Weser, J. Pharmacokinetics of procainamide in man. Ann. NY Acad. Sci. 179:370–382; 1971.

    CAS  PubMed  Google Scholar 

  7. Malkinson, A.M. Genetic studies on lung tumor susceptibility and histogenesis in mice. Environ. Health Perspect. 93:149–159; 1991.

    CAS  PubMed  Google Scholar 

  8. Milanese, J. Estimation theory and prediction in the presence of unknown but bounded uncertainty: a survey. In: Milanese, J.; Tempo, R.; Vicino, A., eds., Robustness in identification and control. New York: Plenum; 1989.

    Google Scholar 

  9. Milanese, M.; Vicino, A. Estimation theory for nonlinear models and set membership uncertainty. Automatica 27:1991.

  10. Press, W.H.; Flannery, B.C.; Teukolsky, S.A.; Vetterling, W.T. Numerical Recipes in C. Cambridge: Cambridge University Press; 1988.

    Google Scholar 

  11. Rickert, D.E.; Baker, T.S.; Bus, J.S.; Barrow, C.S.; Irons, R.D. Benzene disposition in the rat after exposure by inhalation. Toxicol. Appl. Pharmacol. 49:417–423; 1979.

    Article  CAS  PubMed  Google Scholar 

  12. Sabourin, P.J.; Chen, B.T.; Lucier, G.; Birnbaum, L.S.; Fisher, E.; Henderson, R.F. Effect of dose on the absorption and excretion of [14C] benzene administered orally or by inhalation in rats and mice. Toxicol. Appl. Pharmacol. 87:325–336; 1987.

    Article  CAS  PubMed  Google Scholar 

  13. Sabourin, P.J.; Bechtold, W.E.; Birnbaum, L.S.; Lucier, G.; Henderson, R.F. Differences in the metabolism and disposition of inhaled [3H] benzene by F344/N rats and B6C3F1 mice. Toxicol. Appl. Pharmacol. 94:128–140; 1988.

    Article  CAS  PubMed  Google Scholar 

  14. Shen, F.; Lee M.K.; Gong, H.; Cai, X.; King, M. Complex segregation analysis of primary hepatocellular carcinoma in Chinese families: interaction of inherited susceptibility and hepatitis B viral infection. Am. J. Hum. Genet. 49:88–93; 1991.

    CAS  PubMed  Google Scholar 

  15. Spear, R.C.; Hornberger, G.M. Eutrophication in peer inlet-II: identification of critical uncertainty via generalized sensitivity analysis. Water Res. 14:443–449; 1980.

    Article  Google Scholar 

  16. Spear, R.C.; Bois, F.Y.; Woodruff, T.; Auslander, D.M.; Parker, J.; Selvin, S. Modelling benzene pharmacokinetics across three sets of animal data: parametric sensitivity and risk implications. Risk Anal. 11:641–654; 1990.

    Google Scholar 

  17. Taylor, J.A. Epidemiologic evidence of genetic susceptibility to cancer. In: Spatz, L.; Bloom, A.D.; Paul, N.W., eds. Detection of cancer predisposition: laboratory approaches. New York: The March of Dimes Birth Defects Foundation; 1990; pp. 113–127.

    Google Scholar 

  18. Tiwari, J.L.; Hobbie, J.E. Random differential equations as models of ecosystems: Monte Carlo simulation approach. Math. Biosci. 28:25–44; 1976.

    Google Scholar 

  19. Tiwari, J.L.; Hobbie, J.E. Random differential equations as models of ecosystems—II. Initial conditions and parameter specification in terms of maximum entropy distributions. Math. Biosci. 31:37–53; 1976.

    Google Scholar 

  20. Tiwari, J.L.; Hobbie, J.E. Random differential equations as models of ecoystems—III. Bayesian inference for parameters. Math. Biosci. 38:247–258; 1978.

    Article  Google Scholar 

  21. Tsai, K.C.Q.; Auslander, D.M. A statistical methodology of designing controllers for minimum sensitivity of parameter variations. ASME J. Dynamic Syst. Measurement Control 110:126–133; 1988.

    Google Scholar 

  22. Vicino, A.; Milanese, M. Optimal inner bounds of feasible parameter set in linear estimation with bounded noise. IEEE Trans. Auto. Control 36:759–763; 1991.

    Article  Google Scholar 

  23. Walter, E.; Piet-Iahanier, H. Robust linear and nonlinear parameter estimation in the bounded-error context. In: Milanese, M.; Tempo, R.; Vicino, A., eds. Robustness in identification and control. New York; Plenum; 1989.

    Google Scholar 

  24. Woodruff, T.J. Parameterization and structure of benzene pharmacokinetic models. Ph.D. Thesis; Bioengineering Program. University of California, Berkeley, CA, 1991.

    Google Scholar 

  25. Woodruff, T.J.; Bois, F.Y.; Auslander, D.M.; Spear, R.C. Structure and parameterization of pharmacokinetic models: their impact on model predictions. Risk Anal. 12:189–201; 1992.

    CAS  PubMed  Google Scholar 

  26. Young, G.E.; Auslander, D.M. A design methodology for nonlinear systems containing parameter uncertainty. ASME J. Dynamic Syst. Measurement Control 106:15–20; 1984.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, H., Watanabe, K., Auslander, D. et al. Model parameter estimation and analysis: Understanding parametric structure. Ann Biomed Eng 22, 97–111 (1994). https://doi.org/10.1007/BF02368226

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02368226

Keywords

Navigation