Skip to main content
Log in

Neural mechanisms of swallowing: Neurophysiological and neurochemical studies on brain stem neurons in the solitary tract region

  • Published:
Dysphagia Aims and scope Submit manuscript

Abstract

Neurophysiological studies of the nuclei of the tractus solitarius (NTS) and adjacent regions have provided a partial understanding of the integrative brainstem network underlying swallowing and related functions such as respiration. The NTS is also richly endowed with an abundance of neuropeptides and other neuroactive substances, but only limited information is available on their influences on neurons involved specifically in swallowing. Since dysfunction of these neurophysiological and neurochemical regulatory mechanisms in the NTS region may be important in pathophysiological conditions such as dysphagia, increased awareness of and focus on these mechanisms are warranted. This paper outlines recent neurophysiological and neurochemical data that provide information on the afferent inputs and neurophysiological properties of neurons in NTS and adjacent caudal brainstem regions implicated in swallowing, respiration, and respiratory-related reflexes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Carpenter DO: Central nervous system mechanisms in deglutition and emesis. In:Handbook of Physiology. Gastrointestinal System. II. Washington, DC: American Physiological Society 1989

    Google Scholar 

  2. Dubner R, Sessle BJ, Storey AT:The Neural Basis of Oral and Facial Function. New York: Plenum Press, 1978

    Google Scholar 

  3. Miller AJ: Deglutition.Physiol Rev 62:129–184, 1982

    CAS  PubMed  Google Scholar 

  4. Storey AT: A functional analysis of sensory units innervating epiglottis and larynx.Exp Neurol 20:366–383, 1968

    Article  CAS  PubMed  Google Scholar 

  5. Berger AJ: Properties of medullary respiratory neurons.Fed Proc 40:2378–2383, 1981

    CAS  PubMed  Google Scholar 

  6. Buckley JP, Ferrario CM:Central Nervous System Mechanisms in Hypertension. Perspectives in Cardiovascular Research, vol 6, New York: Raven Press 1981

    Google Scholar 

  7. Cohen MI: Central determinants of respiratory rhythm.Annu Rev Physiol 43:91–104, 1981

    Article  CAS  PubMed  Google Scholar 

  8. Jean A: Brainstem organization of the swallowing network.Brain Behav Evol 25:109–116, 1984

    CAS  PubMed  Google Scholar 

  9. Sessle BJ, Lucier GE: Functional aspects of the upper respiratory tract and laryns: a review. In Tildon JT, Roeder LM, Steinschneider A (eds):Sudden Infant Death Syndrome. New York: Academic Press, 1983, pp 501–529

    Google Scholar 

  10. Henry JL: Effects of substance P on functionally identified units in cat spinal cord.Brain Res 114:439–452, 1976

    Article  CAS  PubMed  Google Scholar 

  11. Henry JL, Sessle BJ: Effects of glutamate, substance P and eledoisin-related peptide on solitary tract neurones involved in respiration and respiratory reflexes.Neuroscience 14:863–873, 1985

    Article  CAS  PubMed  Google Scholar 

  12. Henry JL, Sessle BJ: Vasopressin and oxytocin express excitatory effects on respiratory and respiration-related neurones in the nuclei of the tractus solitarius in the cat.Brain Res 49:1150–1155, 1989

    Google Scholar 

  13. Sessle BJ, Greenwood LF, Lund JP, Lucier GE: Effects of upper respiratory tract stimuli on respiration and single respiratory neurons in the adult cat.Exp Neurol 61:245–259, 1978

    Article  CAS  PubMed  Google Scholar 

  14. Sessle BJ, Ball GJ, Lucier GE: Suppressive influences from periaqueductal gray and nucleus raphe magnus on respiration and related reflex activities and on solitary tract neurons, and effect of naloxone.Brain Res 216:145–161, 1981

    Article  CAS  PubMed  Google Scholar 

  15. Sessle BJ, Henry JL: Effects of enkephalin and 5-hydroxtryptamine on solitary tract neurones involved in respiration and respiratory reflexes.Brain Res 327:221–230, 1985

    Article  CAS  PubMed  Google Scholar 

  16. Sessle BJ, Henry JL: Angiotensin II excites neurones in cat solitary tract nuclei which are involved in respiration and related reflex activities.Brain Res 407:163–167, 1987

    Article  CAS  PubMed  Google Scholar 

  17. Krnjevic, K: Chemical nature of synaptic transmission in vertebrates.Physiol Rev 54:418–540, 1974

    CAS  Google Scholar 

  18. Bradley RM, Stedman HM, Mistretta CM: Superior laryngeal nerve response patterns to chemical stimulation of sheep epiglottis.Brain Res 276:81–93, 1983

    Article  CAS  PubMed  Google Scholar 

  19. Harding R, Johnson P, McClelland ME: Liquid-sensitive laryngeal receptors in the developing sheep, cat and monkey.J Physiol (Lond) 277:409–422, 1978

    CAS  Google Scholar 

  20. Miller AJ, Loizzi RF: Anatomical and functional differentiation of superior laryngeal nerve fibers affecting swallowing and respiration.Exp Neurol 42:369–387, 1974

    Article  CAS  PubMed  Google Scholar 

  21. Sampson S, Eyzaguirre C: Some functional characteristics of mechanoreceptors in the larynx of the cat.J Neurophysiol 27:464–480, 1964

    CAS  PubMed  Google Scholar 

  22. Sinclair WJ: Initiation of reflex swallowing from the naso- and oropharynx.Am J Physiol 218:956–960, 1970

    CAS  PubMed  Google Scholar 

  23. Sinclair WJ:The Pharyngeal Plexus: An Anatomical, Histological and Single Unit Analysis in the Cat. Ph.D. Thesis, University of Toronto, Toronto, 1975

    Google Scholar 

  24. Leslie RA: Neuroactive substances in the dorsal vagal complex of the medulla oblongata: nucleus of the tractus solitarius, area postrema, and dorsal motor nucleus of the vagus.Neurochem Int 7:191–211, 1985

    Article  CAS  Google Scholar 

  25. Moss IR, Denavit-Saubie M, Eldrige FL, Gillis RA, Herkenham M, Lahiri S: Neuromodulators and transmitters in respiratory control.Fed Proc 45:2133–2147, 1986

    CAS  PubMed  Google Scholar 

  26. Uddman R, Sundler F: Sites and synthesis. Neuropeptides in the airways: a review.Am Rev Respir Dis 136:S3-S8, 1987

    CAS  PubMed  Google Scholar 

  27. Lundberg JM, Hokfelt T, Nilsson G: Peptide neurons in the vagus, splanchnic and sciatic nerves.Acta Physiol Scand 104:499–501, 1978

    Article  CAS  PubMed  Google Scholar 

  28. Kenny DJ:Excitatory and Inhibitory Influences from the Upper Respiratory Tract on Neurons in the Solitary Tract Nucleus and Adjacent Reticular Formation in the Cat. Ph.D. Thesis, University of Toronto, Toronto, 1976

    Google Scholar 

  29. Doty RW, Richmond WH, Storey AT: Effect of medullary lesions on coordination of deglutition.Exp Neurol 17:91–106, 1967

    Article  CAS  PubMed  Google Scholar 

  30. Holstege G, Graveland G, Bijker-Biemond C, Schuddeboom I: Location of motoneurons innervating soft palate, pharynx and upper esophagus. Anatomical evidence for a possible swallowing center in the pontine reticular formation.Brain Behav Ecol 71:1004–1009, 1983

    Google Scholar 

  31. Sumi T: Role of the pontine reticular formation in the neural organization of deglutition.Jpn J Physiol 22:295–314, 1972

    CAS  PubMed  Google Scholar 

  32. Beckstead RM, Morse JR, Norgren R: The nucleus of the solitary tract in the monkey: projections to the thalamus and brain stem nuclei.J Comp Neurol 190:259–282, 1980

    Article  CAS  PubMed  Google Scholar 

  33. Jean A: Localisation et activité des neurones déglutiteurs bulbaires.J Physiol (Paris) 64:227–268, 1972

    CAS  Google Scholar 

  34. Sessle BJ: Sensory regulation of brain stem motoneurones: physiological and clinical implications. In Perryman JH (ed.):Oral Physiology and Occlusion. An International Symposium. New York: Pergamon Press, 1978, pp 91–114

    Google Scholar 

  35. Altschuler SM, Bao X, Bieger D, Hopkins DA, Miselis RR: Viscerotopic representation of the upper alimentary tract in the rat: sensory ganglia and nuclei of the solitary and spinal trigeminal tracts.J Comp Neurol: 282:1989

  36. Contreras RJ, Beckstead RM, Norgren R: The central projections of the trigeminal, facial, glossopharyngeal and vagus nerves: an autoradiographic study in the rat.J Auton Nerv Sys 6:303–322, 1982

    Article  CAS  Google Scholar 

  37. Kalia MP: Anatomy and neurochemistry of the tractus solitarius. In Kenakin TP (ed):Pharmacologic Analysis of Drug Receptor Interaction. New York: Raven Press, 1987, pp 171–184

    Google Scholar 

  38. Sessle BJ: Excitatory and inhibitory inputs to single neurones in the solitary tract nucleus and adjacent reticular formation.Brain Res 35:319–331, 1973a

    Article  Google Scholar 

  39. Jean A, Car A: Inputs to the swallowing medullary neurons from the peripheral afferent fibres and the swallowing cortical area.Brain Res 178:567–572, 1979

    Article  CAS  PubMed  Google Scholar 

  40. Sweazey RD, Bradley RM: Multimodal neurons in the lamb solitary nucleus: responses to chemical, tactile and thermal stimulation of the caudal oral cavity and epiglottis.Ann NY Acad Sci 510:649–651, 1987

    Google Scholar 

  41. Bieger D, Hockman CH: Suprabulbar modulation of reflex swallowing.Exp Neurol 52:311–324, 1976

    Article  CAS  PubMed  Google Scholar 

  42. Car A: La commande corticale de la deglutition. II. Point d'impact bulbaire de la voie corticofuge déglutitrice.J Physiol (Paris) 66:553–575, 1973

    CAS  Google Scholar 

  43. Amri M, Car A, Jean A: Medullary control of the pontine swallowing neurons in sheep.Exp Brain Res 55: 105–110, 1984

    Article  CAS  PubMed  Google Scholar 

  44. Rudomin P: Excitability changes of superior laryngeal, vagal and depressor afferent terminals produced by stimulation of the solitary tract nucleus.Exp Brain Res 6:156–170, 1968

    Article  CAS  PubMed  Google Scholar 

  45. Sessle BJ: Presynaptic excitability changes induced in single laryngeal primary afferent fibres.Brain Res 53:333–342, 1973b

    Article  CAS  PubMed  Google Scholar 

  46. Doty RW: Neural organization of swallowing. In Code CF (ed):Handbook of Physiology, Alimentary Canal, sect 6, vol IV. Washington, DC: American Physiological Society 1968, pp 1861–1902

    Google Scholar 

  47. Rossignol S, Lund JP, Drew T: The role of sensory inputs in regulating patterns of rhythmical movements in higher vertebrates. A comparison between locomotion, respiration, and mastication. In Cohen AH, Rossignol S, Grillner S (eds):Neural Control of Rhythmic Movements in Vertebrates. New York: John Wiley & Sons, 1988, 183–201

    Google Scholar 

  48. Meadows JC: Dysphagia in unilateral cerebral lesions.J Neurol Neurosurg Psychiatry 36:853–860, 1973

    Article  CAS  PubMed  Google Scholar 

  49. Logemann J:Evaluation and Treatment of Swallowing Disorders. San Diego: College-Hill Press, 1983

    Google Scholar 

  50. Storey AT, Kenny DJ: Growth, development and ageing of orofacial tissues: neural aspects.Adv Dent Res 3:14–29, 1989

    CAS  PubMed  Google Scholar 

  51. Hockman CH, Bieger D, Weerasuriya A: Supranuclear pathways of swallowing.Prog Neurobiol 12:15–32, 1979

    Article  CAS  PubMed  Google Scholar 

  52. McLennan H:Synaptic Transmission, 2nd ed. London: WB Saunders, 1970

    Google Scholar 

  53. Werman R: Criteria for identification of a central nervous system transmitter.Comp Biochem Physiol 18:745–766, 1966

    Article  CAS  PubMed  Google Scholar 

  54. Dietrich WD, Lowry OH, Loewy AD: The distribution of glutamate, GABA and aspartate in the nucleus tractus solitarius of the cat.Brain Res 237:254–260, 1982

    Article  CAS  PubMed  Google Scholar 

  55. Reis DJ, Granata AR, Perrone MH, Talman WT: Evidence that glutamic acid is the neurotransmitter of baroreceptor afferents terminating in the nucleus tractus solitarius (NTS).J Auton Nerv Syst 3:321–334, 1981

    Article  CAS  PubMed  Google Scholar 

  56. Champagnat J, Denavit-Saubie M, Velluti JC: Excitability of bulbar respiratory neurones: a study using microiontophoretic applications of depolarizing agents.Brain Res 191:359–377, 1980

    Article  CAS  PubMed  Google Scholar 

  57. Granata AR, Reis DU: Release of [3H]-glutamic acid (L-glu) and [3H]-D-aspartic acid (D-asp) in the area of nucleus tractus solitarius in vivo produced by stimulation of the vagus nerve.Brain Res 259:77–93, 1983

    Article  CAS  PubMed  Google Scholar 

  58. Simon JR, di Micco SK, Aprison MH: Neurochemical studies of the nucleus of the solitary tract, dorsal motor nucleus of the vagus and the hypoglossal nucleus in rat: topographical distribution of glutamate uptake, GABA uptake and glutamic acid decarboxylase activity.Brain Res Bull 14:49–53, 1985

    Article  CAS  PubMed  Google Scholar 

  59. Talman WT, Granata AR, Reis DJ: Glutamatergic mechanisms in the nucleus tractus solitarius in blood pressures control.Fed Proc 43:39–44, 1984

    CAS  PubMed  Google Scholar 

  60. Wessberg P, Hedner J, Hedner T, Jonason J: Central respiratory and cardiovascular effects in the rat of some putative neurotransmitter amino acids.N W Arch Pharmacol 323:58–65, 1983

    Article  CAS  Google Scholar 

  61. Hashim MA, Bieger D: Excitatory action of 5-HT on deglutitive substrates in the rat solitary complex.Brain Res Bull 18:355–363, 1987

    Article  CAS  PubMed  Google Scholar 

  62. Foutz AS, Champagnat J, Denavit-Saubie M: N-Methyl-D-aspartate (NMDA) receptors control respiratory off-switch in cat.Neurosci Lett 87:221–226, 1988

    Article  CAS  PubMed  Google Scholar 

  63. Kubo T, Kihara M: Evidence forγ-aminobutyric acid receptor-mediated modulation of the aortic baroreceptor reflex in the nucleus tractus solitarii of the rat.Neurosci Lett 89:156–160, 1988

    Article  CAS  PubMed  Google Scholar 

  64. Cuello AC, Kanazawa I: The distribution of substance P immunoreactive fibres in the rat central nervous system.J Comp Neurol 178:129–156, 1978

    Article  CAS  PubMed  Google Scholar 

  65. Ljungdahl A, Hokfelt T, Nilsson G, Rehnfelt J, Elde R, Said S: Distribution of substance P-like immunoreactivity in the central nervous system of the rat. I. Cell bodies and nerve terminals.Neuroscience 3:861–943, 1978

    Article  CAS  PubMed  Google Scholar 

  66. Maley B, Elde R: Immunohistochemical localization of putative neurotransmitters within the feline nucleus tractus solitarii.Neuroscience 7:2469–2490, 1982

    Article  CAS  PubMed  Google Scholar 

  67. Morin-Surun MP, Jordan D, Champagnat J, Spyer KM, Denavit-Saubie M: Excitatory effects of iontophoretically applied substance P on neurons in the nucleus tractus solitarius of the cat: lack of interaction with opiates and opioids.Brain Res 307:388–392, 1984d

    Article  CAS  PubMed  Google Scholar 

  68. Henry JL, Sessle BJ, Lucier GE, Hu JW: Effects of substance P on nociceptive and non-nociceptive trigeminal brain stem neurons.Pain 8:33–45, 1980

    Article  CAS  PubMed  Google Scholar 

  69. Maley BE, Sasek CA, Seybold VS: Substance P binding sites in the nucleus tractus solitarius of the cat.Peptides 9:1301–1306, 1989

    Article  Google Scholar 

  70. Mueller RA, Lundberg DBA, Breese GR, Hedner J, Hedner T, Jonason J: The neuropharmacology of respiratory control.Pharmacol Rev 34:255–285, 1982

    CAS  PubMed  Google Scholar 

  71. Carter DA, Lightman SL: Cardio-respiratory actions of substance P, TRH and 5-HT in the nucleus tractus solitarius of rats: evidence for functional interactions of neuropeptides and amine neurotransmitters.Neuropeptides 6:425–436, 1985

    Article  CAS  PubMed  Google Scholar 

  72. Lindefors N, Yamamoto Y, Pantaleo T, Lagercrantz H, Brodin E, Ungerstedt U: In vivo release of substance P in the nucleus tractus solitarii increases during hypoxia.Neurosci Lett 69:94–97, 1986

    Article  CAS  PubMed  Google Scholar 

  73. Bergstrom L, Lagercrantz H, Terenius L: Post-mortem analyses of neuropeptides in brains from sudden infant death victims.Brain Res 323:279–285, 1984

    Article  CAS  PubMed  Google Scholar 

  74. Ju G, Hokfelt T, Brodin E, Fahrenkrug J, Fischer JA, Frey P, Elde RP, Brown JC: Primary sensory neurons of the rat showing calcitonin gene-related peptide immuno-reactivity and their relation to substance P-, somatostatin-, galanin-, vasoactive intestinal polypeptide- and cholecystokinin-immunoreactive ganglion.Cell Tissue Res 247:417–426, 1987

    Article  CAS  PubMed  Google Scholar 

  75. Morishima Y, Takagi H, Akai F, Tohyama M, Emson PC, Hillyard CJ, Girgis SI, MacIntyre I: Light and electron microscopic studies of calcitonin gene-related peptide-like immunoreactive neurons and axon terminals of the nucleus of the tractus solitarius of the rat.Brain Res 344:191–195, 1985

    Article  CAS  PubMed  Google Scholar 

  76. Skofitsch G, Jacobowitz DM: Autoradiographic distribution of125-I calcitonin gene-related peptide binding sites in the rat central nervous system.Peptides 4:975–986, 1985

    Article  Google Scholar 

  77. Vallejo M, Lightman S, Marshall I: Central cardiovascular effects of calcitonin gene-related peptide — interaction with noradrenaline in the nucleus tractus solitarius of rats.Exp Brain Res 70:221–229, 1988

    CAS  PubMed  Google Scholar 

  78. de Beaurepaire R, Suaudeau C: Anorectic effect of calcitonin, neurotensin and bombesin infused in the area of the rostral part of the nucleus of the tractus solitarius in the rat.Peptides 9:729–733, 1988

    Article  PubMed  Google Scholar 

  79. Kalia M, Fuxe K, Hokfelt T, Johansson O, Lang R, Ganten D, Cuello C, Terenius L: Distribution of neuropeptide immunoreactive nerve terminals within the subnuclei of the nucleus of the tractus solitarius of the rat.J Comp Neurol 222:409–444, 1984

    Article  CAS  PubMed  Google Scholar 

  80. Vincent SR, McIntosh CHS, Buchan AMJ, Brown JC: Central somatostatin systems revealed with monoclonal antibodies.J Comp Neurol 238:169–186, 1985

    Article  CAS  PubMed  Google Scholar 

  81. Reubi JC, Maurer R: Autoradiographic mapping of somatostatin receptors in the rat central nervous system and pituitary.Neuroscience 15:1183–1193, 1985

    Article  CAS  PubMed  Google Scholar 

  82. Jacquin T, Champagnat J, Madamba S, Denavit-Saubie M, Siggins GR: Somatostatin depresses excitability in neurons of the solitary tract complex through hyperpolarization and augmentation of IM, a non-inactivating voltage-dependent outward current blocked by muscarinic agonists.Proc Natl Acad Sci USA 85:948–952, 1988

    CAS  PubMed  Google Scholar 

  83. Koda LY, Ling N, Benoit R, Madamba SG, Bakhit C: Blood pressure following microinjection of somatostatin related peptides into the rat nucleus tractus solitarii.Eur J Pharmacol 113:425–430, 1985

    Article  CAS  PubMed  Google Scholar 

  84. Hwang B, Wu J-Y: Ultrastructural studies on catecholaminergic terminals and GABAergic neurons in nucleus tractus solitarius of the rat medulla oblongata.Brain Res 302:57–67, 1984

    Article  CAS  PubMed  Google Scholar 

  85. Maley B, Newton BW: Immunohistochemistry ofγ-aminobutyric acid in the cat nucleus tractus solitarius.Brain Res 330:364–368, 1985

    Article  CAS  PubMed  Google Scholar 

  86. Bennett JA, McWilliam PN, Shepheard SL: Aγ-aminobutyric-acid mediated inhibition of neurones in the nucleus tractus solitarius of the cat.J Physiol Lond 392:417–426, 1987

    CAS  PubMed  Google Scholar 

  87. Denavit-Saubie M, Champagnat J: The effect of some depressing amino acids on bulbar respiratory and non-respiratory neurones.Brain Res 97:356–361, 1975

    Article  CAS  Google Scholar 

  88. Champagnat J, Denavit-Saubie M, Moyanova S, Rondouin G: Involvement of amino acids in periodic inhibitions of bulbar respiratory neurones.Brain Res 237:351–365, 1982

    Article  CAS  PubMed  Google Scholar 

  89. Da Silva AMT, Hartley B, Hamosh P, Quest JA, Gillis RA: Respiratory depressant effects of GABA A- and B-receptor agonist in the cat.J Appl Physiol 62:2264–2272, 1987

    Article  Google Scholar 

  90. Catelli JM, Giakas WJ, Sved AF: GABAergic mechanisms in nucleus tractus solitarius alter blood pressure and vasopressin release.Brain Res 403:279–289, 1987

    Article  CAS  PubMed  Google Scholar 

  91. Wang O, Li P: Inhibition of baroreflex following microinjection of GABA or morphine into the nucleus tractus solitarii in rabbits.J Auton Nerv Syst 25:165–172, 1988

    Article  CAS  PubMed  Google Scholar 

  92. Waldrop TG, Eldridge FL, Millhorn DE: Inhibition of breathing after stimulation of muscle is mediated by endogenous opiates and GABA.Respir Physiol 54:211–222, 1983

    Article  CAS  PubMed  Google Scholar 

  93. Jordan D, Mifflin SW, Spyer KM: Hypothalamic inhibition of neurons in the nucleus tractus solitarius of the cat is GABA mediated.J Physiol Lond 399:389–399, 1988

    CAS  PubMed  Google Scholar 

  94. Watson SJ, Akil H, Sullivan S, Barchas JD: Immunocytochemical localization of methionine enkephalin: preliminary observations.Life Sci 21:733–738, 1977

    Article  CAS  PubMed  Google Scholar 

  95. Lee HS, Basbaum AI: Immunoreactive pro-enkephalin and pro-dynorphin products are differentially distributed within the nucleus of the solitary tract of the rat.J Comp Neurol 230:614–619, 1984

    Article  CAS  PubMed  Google Scholar 

  96. Moskowitz AS, Goodman RR: Autoradiographic analysis of μ1, μ2 andδ opioid binding in the central nervous system of C57BL 6BY and CXBK (opioid receptor-deficient) mice.Brain Res 360:108–116, 1985

    Article  CAS  PubMed  Google Scholar 

  97. Dashwood MR, Muddle JR, Spyer KM: Opiate receptor subtypes in the nucleus tractus solitarii of the cat: the effect of vagal section.Eur J Pharmacol 155:85–91, 1988

    Article  CAS  PubMed  Google Scholar 

  98. Denavit-Saubie M, Champagnat J, Zieglgansberger W: Effects of opiates and methionine-enkephalin on pontine and bulbar respiratory neurones of the cat.Brain Res 155:55–67, 1978

    Article  CAS  PubMed  Google Scholar 

  99. Morin-Surun MP, Gacel G, Champagnat J, Denavit-Saubie M, Roques BP: Pharmacological identification ofδ andμ opiate receptors on bulbar respiratory neurons.Eur J Pharmacol 98:241–247, 1984c

    Article  CAS  PubMed  Google Scholar 

  100. Morin-Surun MP, Boudinot E, Gacel G, Champagnat J, Roques BP, Denavit-Saubie, M: Different effects ofμ andδ opiate agonists on respiration.Eur J Pharmacol 98:235–240, 1984a

    Article  CAS  PubMed  Google Scholar 

  101. Pazos A, Florez J: A comparative study in rats of the respiratory depression and analgesia induced byμ- andδ-opioid agonists.Eur J Pharmacol 99:15–21, 1984

    Article  CAS  PubMed  Google Scholar 

  102. Pfeiffer A, Pfeiffer DG, Feuerstein G, Faden AI, Kopin IJ: An increase in opiate receptor-sites is associated with enhanced cardiovascular depressant but not respiratory depressant action of morphine.Brain Res 296:305–312, 1984

    Article  CAS  PubMed  Google Scholar 

  103. Dahlstrom A, Fuxe K: Evidence for the existence of monoamines in the central nervous system I. Demonstration of monoamines in the cell bodies of brain stem neurons.Acta Physiol Scand 62:1–55, 1964

    Google Scholar 

  104. Eldridge FL, Millhorn DE: Central regulation of respiration by endogenous neurotransmitters and neuromodulators.Annu Rev Physiol 43:121–135, 1981

    Article  CAS  PubMed  Google Scholar 

  105. Armijo JA, Mediavilla A Florez J: Inhibition of the activity of the respiratory and vasomotor centers by centrally administered 5-hydroxytryptamine in cats.Rev Esp Fisiol 35:219–228, 1979

    PubMed  Google Scholar 

  106. Lundberg DBA, Mueller RA, Breese GR: An evaluation of the mechanism by which serotonergic activation depresses respiration.J Pharmacol Exp Ther 212:397–404, 1980

    CAS  PubMed  Google Scholar 

  107. Shvaloff A, Laguzzi R: Serotonin receptors in the rat nucleus tractus solitarii and cardiovascular regulation.Eur J Pharmacol 132:283–288, 1986

    Article  CAS  PubMed  Google Scholar 

  108. Bieger D: Role of bulbar serotonergic neurotransmission in the initiation of swallowing in the rat.Neuropharmacology 20:1073–1083, 1981

    Article  CAS  PubMed  Google Scholar 

  109. Kessler JP, Jean A: Inhibition of the swallowing reflex by local application of serotonergic agents into the nucleus of the solitary tract.Eur J Pharmacol 118:77–85, 1985

    Article  CAS  PubMed  Google Scholar 

  110. Kessler JP, Jean A: Effect of catecholamines on the swallowing reflex after pressure microinjections into the lateral solitary complex of the medulla oblongata.Brain Res 386:69–77, 1986

    Article  CAS  PubMed  Google Scholar 

  111. Thoa NB, Davidson RK: Potassium evoked catecholamine release from the nucleus tractus solitarius in vitro.Life Sci 30:1479–1485, 1982

    Article  CAS  PubMed  Google Scholar 

  112. Unnerstall JR, Kopajtic TA, Kuhar MJ: Distribution of α2 agonist binding sites in the rat and human central nervous system: analysis of some functional, anatomic correlates of the pharmacologic effects of clonidine and related adrenergic agents.Brain Res Rev 7:69–101, 1984

    Article  CAS  Google Scholar 

  113. Wemer J, Grankhyzen AL, Mulder AH: Pharmacological characterization of presynaptic α-adrenoceptors in the nucleus tractus solitarii and the cerebral cortex of the rat.Neuropharmacology 21:499–506, 1982

    Article  CAS  PubMed  Google Scholar 

  114. Champagnat J, Denavit-Saubie M, Henry JL, Leviel V: Catecholaminergic depressant effects on bulbar respiratory mechanisms.Brain Res 160:57–68, 1979

    Article  CAS  PubMed  Google Scholar 

  115. Feldman PD, Felder RB: α2-Adrenergic modulation of synaptic excitability in the rat nucleus tractus solitarius.Brain Res 480:190–197, 1989

    Article  CAS  PubMed  Google Scholar 

  116. Roman C, Gonella J: Extrinsic control of digestive tract motility. In Johnson LR (ed):Physiology of the Gastrointestinal Tract. New York: Raven Press, 1981, pp 89–333

    Google Scholar 

  117. Kubo T, Kihara M, Hata H, Misu Y: Cardiovascular effects in rats of α1- and α2-adrenergic agents injected into the nucleus tractus solitarii.Naunyn Schmiedebergs Arch Pharmacol 335:274–277, 1987

    Article  CAS  PubMed  Google Scholar 

  118. Granata AR, Woodruff GN: Dopaminergic mechanisms in the nucleus tractus solitarius and effects on blood pressure.Brain Res Bull 8:483–488, 1982

    Article  CAS  PubMed  Google Scholar 

  119. Titeler M, Tedesco JL, Seeman P: Selective labeling of pre-synaptic receptors by3H-dopamine,3H-apomorphine and3H-clonidine; labeling of post-synaptic sites by3H-neuroleptics.Life Sci 23:587–592, 1978

    Article  CAS  PubMed  Google Scholar 

  120. Sofroniew MV, Schrell U: Evidence for direct projection from oxytocin and vasopressin neurons in the hypothalamic paraventricular nucleus to the medulla oblongata: immunohistochemical visualization of both the horseradish peroxidase transported and the peptide produced by the same neurons.Neurosci Lett 22:211–217, 1981

    Article  Google Scholar 

  121. Swanson LW, Sawchenko PE: Hypothalamic integration: organization of the paraventricular and supraoptic nuclei.Annu Rev Neurosci 6:269–324, 1983

    Article  CAS  PubMed  Google Scholar 

  122. Tribollet E, Barberis C, Jard S, Dubois-Dauphin M, Dreifuss JJ: Localization and pharmacological characterization of high affinity binding sites for vasopressin and oxytocin in the rat brain by light microscopic autoradiography.Brain Res 442:105–118, 1988

    Article  CAS  PubMed  Google Scholar 

  123. Vallejo M, Carter DA, Lightman SL: Haemodynamic effects of arginine-vasopressin and microinjections into the nucleus tractus solitarius: a comparative study of vasopressin, a selective vasopressin receptor agonist and antagonist, and oxytocin.Neurosci Lett 52:247–252, 1984

    Article  CAS  PubMed  Google Scholar 

  124. King KA, Pang CCY: Cardiovascular effects of injections of vasopressin into the nucleus tractus solitarius in conscious rats.Br J Pharmacol 90:531–538, 1987

    CAS  PubMed  Google Scholar 

  125. Pittman QJ, Franklin LG: Vasopressin antagonist in nucleus tractus solitarius/vagal area reduces pressor and tachycardia responses to paraventricular nucleus stimulation in rats.Neurosci Lett 56:155–160, 1985

    Article  CAS  PubMed  Google Scholar 

  126. Brownfield MS, Reid IA, Ganten D, Ganong WF: Differential distribution of immunoreactive angiotensin and angiotensin-converting enzyme in rat brain.Neuroscience 7:1759–1769, 1982

    Article  CAS  PubMed  Google Scholar 

  127. Gehlert DR, Speth RC, Healy DP, Wamsley JK: Autoradiographic localization of angiotensin II receptors in the rat brain stem.Life Sci 34:1565–1571, 1984

    Article  CAS  PubMed  Google Scholar 

  128. Diz DI, Barnes KL, Ferrario CM: Contribution of the vagus nerve to angiotensin II binding sites in the canine medulla.Brain Res Bull 17:497–505, 1986

    Article  CAS  PubMed  Google Scholar 

  129. Casto R, Phillips MI: Mechanism of pressor effects by angiotensin the nucleus tractus solitarius of rats.Am J Physiol 247:R575-R581, 1984

    CAS  PubMed  Google Scholar 

  130. Casto R, Phillips MI: Angiotensin II attenuates baroreflexes at nucleus tractus solitarius of rats.Am J Physiol 250:R193-R198, 1986

    CAS  PubMed  Google Scholar 

  131. Wu M, Harding RK, Hugenholtz H, Kucharczyk J: Emetic effects of centrally administered angiotensin II, arginine vasopressin and neurotensin in the dog.Peptides 6 (Suppl. I):173–175, 1985

    Article  CAS  PubMed  Google Scholar 

  132. Armstrong DM, Rotler A, Hersh LB, Pickel VM: Localization of choline acetyltransferase in perikarya and dendrites within the nuclei of the solitary tracts.J Neurosci Res 20:279–290, 1988

    Article  CAS  PubMed  Google Scholar 

  133. Cortes R, Probst A, Palacios JM: Quantitative light microscopic autoradiographic localization of cholinergic muscarinic receptors in the human brain: brainstem.Neuroscience 12:1003–1026, 1984

    Article  CAS  PubMed  Google Scholar 

  134. Bohmer G, Schmid K, Schmidt P, Stehle J: Cholinergic effects on spike-density and burst-duration of medullary respiration-related neurons in the rabbit: an iontophoretic study.Neuropharmacology 26:1561–1572, 1987

    Article  CAS  PubMed  Google Scholar 

  135. Kubo T, Misu Y: Cardiovascular response to microinjection of physostigmine and choline into the dorsal medullary site of the rat.Neuropharmacology 20:1091–1095, 1981

    Article  CAS  PubMed  Google Scholar 

  136. Criscione L, Reis DJ, Talman WT: Cholinergic mechanisms in the nucleus tractus solitarii and cardiovascular regulation in the rat.Eur J Pharmacol 88:47–55, 1983

    Article  CAS  PubMed  Google Scholar 

  137. Morin-Surun MP, Champagnat J, Denavit-Saubie M, Moyanova S: The effects of acetylcholine on bulbar respiratory related neurones. Consequences of anaesthesia by pentobarbital.Naunyn Schmiedebergs Arch Pharmacol 325:205–208, 1984b

    Article  CAS  PubMed  Google Scholar 

  138. Holton FA, Holton P: The capillary dilator substances in dry powders of spinal roots; a possible role of adenosine triphosphate in chemical transmission from nerve endings.J Physiol Lond 126:124–140, 1954

    CAS  PubMed  Google Scholar 

  139. Salter MW, Henry JL: Effects of adenosine 5′-monophosphate and adenosine 5′-triphosphate (ATP) on functionally identified units in the cat spinal dorsal horn. Evidence for a differential effect of ATP on nociceptive versus nonnociceptive units.Neuroscience 15:815–825, 1985

    Article  CAS  PubMed  Google Scholar 

  140. Salter MW, Henry JL: Evidence that adenosine mediates the depression of spinal dorsal horn neurons induced by peripheral vibration in the cat.Neuroscience 22:631–650, 1987

    Article  CAS  PubMed  Google Scholar 

  141. Salter MW, Henry JL: Tachykinins enhance the depression of spinal nociceptive neurones caused by cutaneously applied vibration in the cat.Neuroscience 27:243–249, 1988

    Article  CAS  PubMed  Google Scholar 

  142. Watt AH, Buss DC, Routledge PA, Runold M, Lagercrantz H, Fredhold BB: Respiratory effects of an adenosine analogue.J Appl Physiol 62:1749–1756, 1987

    Google Scholar 

  143. Wessberg P, Hedner J, Hedner T, Persson B, Jonason, J: Adenosine mechanisms in the regulation of breathing in the rat.Eur J Pharmacol 106:59–67, 1985

    Article  Google Scholar 

  144. Eldridge FL, Millhorn DE, Kiley JP: Respiratory effects of a long-acting analog of adenosine.Brain Res 301:273–280, 1984

    Article  CAS  PubMed  Google Scholar 

  145. Deckert J, Bisserbe JC, Marangos PJ: Quantitative [3H]dipyridamole autoradiography: evidence for adenosine transporter heterogeneity in guinea pig brain.Naunyn Schmiedebergs Arch Pharmacol 335:660–666, 1987

    Article  CAS  PubMed  Google Scholar 

  146. Henry JL, Austin KB: Physiologically identified neurons in cat medulla respond to iontophoresis of adenosine precursors.Soc Neurosci Abstr 176:3, 1989

    Google Scholar 

  147. Barraco RA, Janusz CA: Respiratory effects of 5′-ethylcarboxamidoadenosine, an analog of adenosine, following microinjections into the nucleus tractus solitarius of rats.Brain Res 480:360–364, 1989

    Article  CAS  PubMed  Google Scholar 

  148. Runold M, Langercrantz H, Fredholm BB: Ventilatory effect of an adenosine analogue in unanesthetized rabbits during development.J Appl Physiol 61:255–259, 1986

    CAS  PubMed  Google Scholar 

  149. Dekin MS, Richerson GB, Getting, P.A.: Thyrotropin-releasing hormone induces rhythmic bursting in neurons in the nucleus tractus solitarius.Science 229:67–69, 1985

    CAS  PubMed  Google Scholar 

  150. Holtman JR, Buller AL, Hamosh P, Gillis RA: Central respiratory stimulation produced by thyrotropin-releasing hormone in the cat.Peptides 7:207–212, 1986

    Article  CAS  PubMed  Google Scholar 

  151. McCown TJ, Hedner JA, Towle AC, Breese GR, Mueller RA: Brainstem localization of a thyrotropin-releasing hormone-induced change in respiratory function.Brain Res 373:189–196, 1986

    Article  CAS  PubMed  Google Scholar 

  152. Palkovitz M, Mezey E, Eskay RL, Brownstein MJ: Innervation of the nucleus of the solitary tract and the dorsal vagal nucleus by thyrotropin-releasing hormone-containing raphe neurons.Brain Res 373:246–254, 1986

    Article  Google Scholar 

  153. Uhl GR, Goodman RR, Snyder SH: Neurotensin-containing cell bodies, fibers and nerve terminals in the brain stem of the rat: immunohistochemical mapping.Brain Res 167:77–91, 1979

    Article  CAS  PubMed  Google Scholar 

  154. Pazos A, Lopez M, Florez, J: Different mechanisms are involved in the respiratory depression and analgesia induced by neurotensin in rats.Eur J Pharmacol 98:119–123, 1984

    Article  CAS  PubMed  Google Scholar 

  155. Morin-Surun MP, Marlot D, Kessler JP, Denavit-Saubie M: The excitation by neurotensin of nucleus tractus solitarius neurons induced apneustic breathing.Brain Res 384:106–112, 1986

    Article  CAS  PubMed  Google Scholar 

  156. De Koninck Y, Henry JL: Bombesin, neuromedin B and neuromedin C selectively depress superficial dorsal horn neurones in the cat spinal cord.Brain Res 1989

  157. Hedner J, Mueller RA, Hedner T, McCowan TJ, Breese GR: A centrally elicited respiratory stimulant effect by bombesin in the rat.Eur J Pharmacol 115:21–29, 1985

    Article  CAS  PubMed  Google Scholar 

  158. Holtman JR, Jensen RT, Buller A, Hamosh P, da Silva AMT, Gillis RA: Central respiratory stimulant effect of bombesin in the cat.Eur J Pharmacol 90:449–456, 1983

    Article  CAS  PubMed  Google Scholar 

  159. Kawata N, Nakao K, Morii N, Kiso Y, Yamashita H, Imura H, Sano Y: Atrial natriuretic polypeptide: topographical distribution in the rat brain by radioimmunoassay and immunohistochemistry.Neuroscience 16:521–546, 1985

    Article  CAS  PubMed  Google Scholar 

  160. Quirion R, Dalpe M, DeLean A, Gutkowska J, Cantin M, Genest J: Atrial natriuretic factor (ANF) binding sites in brain and related structures.Peptides 5:1167–1172, 1984

    Article  CAS  PubMed  Google Scholar 

  161. Kurihara M, Saavedra JM, Shigematsu K: Localization and characterization of atrial natriuretic peptide binding sites in discrete areas of rat brain and pituitary gland by quantitative autoradiography.Brain Res 408:31–39, 1987

    Article  CAS  PubMed  Google Scholar 

  162. Ermirio R, Ruggeri P, Cogo CE, Molinari C, Calaresu FR: Neuronal and cardiovascular responses to ANF microinjected into the solitary nucleus.Am J Physiol 256:R577-R582, 1989

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sessle, B.J., Henry, J.L. Neural mechanisms of swallowing: Neurophysiological and neurochemical studies on brain stem neurons in the solitary tract region. Dysphagia 4, 61–75 (1989). https://doi.org/10.1007/BF02407148

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF02407148

Key words

Navigation